University of Regensburg
Faculty of Mathematics

HomeAboutPeopleEventsResearchRTGGuest ProgrammeImpressum

From SFB1085 - Higher Invariants
Jump to navigationJump to search
(Created page with "__NOTOC__ ==Higher Invariants Oberseminar (HIOB 8)== The topic in this semester is resolution of singularities in characteristic zero. The goal is to understand a simplified...")
 
No edit summary
 
(One intermediate revision by one other user not shown)
Line 3: Line 3:
==Higher Invariants Oberseminar (HIOB 8)==
==Higher Invariants Oberseminar (HIOB 8)==


The topic in this semester is resolution of singularities in characteristic zero. The goal is to understand a simplified version of Hironaka's proof. A good introduction to the subject is Dan Abramovich's article for the ICM 2018 ([https://arxiv.org/abs/1711.09976 link]).
The topic in this semester is index theory. The idea is to understand the classical index theorem of Atiyah-Singer through Connes' groupoid approach while learning higher aspects of C^{*}-algebra K-theory and Lie groupoids.  


==Dates and location==
==Dates and location==


Mondays, 12-14, SFB seminar room (M 311)
Mondays, 12-14, SFB Seminar Room.
 
==Program==
Here you may find the [https://homepages.uni-regensburg.de/~dac61706/hiob_ss2019 programme].


==Talks==
==Talks==


If you have any questions about the talks, feel free to contact the organisers (Johann Haas, Christian Dahlhausen, Federico Binda). If you are interested in giving a talk in this seminar, please enrol in the list below.  
If you are interested in giving a talk in this seminar, please contact U. Bunke.  




Line 27: Line 24:


   <tr>
   <tr>
     <td>Apr</td>
     <td>15.</td>
     <td>29</td>
     <td>Oct</td>
     <td>Resolution for curves</td>
     <td>The classical index theorem
     <td>Federico Binda</td>
</td>
     <td>J. Gloeckle  </td>
   </tr>
   </tr>


   <tr>
   <tr>
     <td>May</td>
     <td>22.</td>
     <td>06</td>
     <td>Oct </td>
     <td>Blow-ups and examples</td>
     <td>The family version and the Riemann-Roch theorem</td>
    <td>Marta Barigozzi</td>
  <td>N. Otoba </td>
   </tr>
   </tr>


   <tr>
   <tr>
     <td>May</td>
     <td>29.</td>
     <td>13</td>
     <td>Oct</td>
     <td>Principalisation and resolution</td>
     <td>Dirac operators </td>
     <td>Christian Dahlhausen</td>
     <td>J. Seipel </td>
   </tr>
   </tr>


<tr>
<tr>
     <td>May</td>
     <td>05.</td>
     <td>20</td>
     <td>Nov</td>
     <td>Plan of the proof</td>
     <td>Geometric applications of the index theorem for Dirac operators</td>
     <td>Johann Haas</td>
     <td>B. Ammann </td>
   </tr>
   </tr>


   <tr>
   <tr>
     <td>May</td>
     <td>12.</td>
     <td>27</td>
     <td>Nov</td>
     <td>The inductive step of the proof</td>
     <td>K-theory of C^∗-algebras</td>
     <td>Yassin Mousa</td>
     <td>G. Tamme </td>
   </tr>
   </tr>


<tr>
<tr>
     <td>Jun</td>
     <td>19.</td>
     <td>03</td>
     <td>Nov</td>
     <td>Derivatives of ideals, maximal contact, and going down  </td>
     <td>Kasparov KK-theory</td>
     <td>Johannes Sprang</td>
     <td> </td>
  </tr>
  <tr>
    <td>26.</td> 
    <td>Nov</td>
    <td>The KK-category</td>
  <td>A. Engel</td>
   </tr>
   </tr>


   <tr>
   <tr>
     <td>Jun</td>  
     <td>3.</td>
     <td>10</td>
     <td>Dez</td>
     <td><font color="red">no seminar due to holiday</font></td>
     <td>Duality </td>
  <td><font color="red">no speaker</font></td>
    <td>M. Land </td>
   </tr>
   </tr>


   <tr>
   <tr>
     <td>Jun</td>
     <td>10.</td>
     <td>17</td>
     <td>Dez.</td>
     <td>Restriction of derivatives and going up</td>
     <td> Crossed products and Connes’ Thom isomorphism </td>
    <td></td>
  <td>C. Dahlhausen</td>
   </tr>
   </tr>


   <tr>
   <tr>
     <td>Jun</td>
     <td>17.</td>
     <td>24</td>
     <td>Dez</td>
     <td>Uniqueness of maximal contact</td>
     <td>Lie groupoids </td>
  <td></td>
    <td>K. Nguyen</td>
   </tr>
   </tr>


   <tr>
   <tr>
     <td>Jul</td>
     <td>7.</td>
     <td>01</td>
     <td>Jan</td>
     <td>Tuning of ideals</td>
     <td>C∗-algebras associated to Lie groupoids  </td>
     <td></td>
     <td>K. Bohlen</td>
   </tr>
   </tr>


   <tr>
   <tr>
     <td>Jul</td>
     <td>14.</td>
     <td>08</td>
     <td>Jan</td>
     <td>Order reduction for ideals</td>
     <td>Deformation to the normal cone</td>
     <td></td>
     <td> </td>
   </tr>
   </tr>


   <tr>
   <tr>
     <td>Jul</td>
     <td>21.</td>
     <td>15</td>
     <td>Jan</td>
     <td>Order reduction for marked ideals</td>
     <td>Proof of the families index theorem (a la Connes)</td>
     <td></td>
     <td></td>
   </tr>
   </tr>


   <tr>
   <tr>
     <td>Jul</td>
     <td>28.</td>
     <td>22</td>
     <td>Jan</td>
     <td>TBA</td>
     <td> The Baum-Connes conjecture</td>
    <td>S. Echterhoff (Münster)</td>
  </tr>
 
<tr>
    <td>4.</td>
    <td>Feb</td>
    <td> Discussion of the topic for HIOB SS 2019 </td>
     <td></td>
     <td></td>
   </tr>
   </tr>


</table>
</table>
Line 122: Line 134:


== Previous instances of HIOB ==
== Previous instances of HIOB ==
*[[Higher_Invariants_Oberseminar_WS1819 |HIOB WS 2018/19]]
*[[Higher_Invariants_Oberseminar_SS2018|HIOB SS 2018]]
*[[Higher_Invariants_Oberseminar_SS2018|HIOB SS 2018]]
*[[Higher_Invariants_Oberseminar_WS_2017/2018|HIOB WS 2017/2018]]
*[[Higher_Invariants_Oberseminar_WS_2017/2018|HIOB WS 2017/2018]]
*[[Higher_Invariants_Oberseminar_SS_2017|HIOB SS 2017]]
*[[Higher_Invariants_Oberseminar_SS_2017|HIOB SS 2017]]
*[[Higher_Invariants_Oberseminar_WS16/17|HIOB WS 2016/17]]
* [[Higher_Invariants_Oberseminar_WS16/17|HIOB WS 2016/17]]
*[[Higher_Invariants_Oberseminar_SoSe16|HIOB SoSe 2016]]
* [[Higher_Invariants_Oberseminar_SoSe16|HIOB SoSe 2016]]
*[[Higher_Invariants_Oberseminar_WS1516|HIOB WS 2015/16]]
* [[Higher_Invariants_Oberseminar_WS1516|HIOB WS 2015/16]]
*[[Higher_Invariants_Oberseminar | HIOB SS 2015]]
* [[Higher_Invariants_Oberseminar | HIOB SS 2015]]

Latest revision as of 12:26, 12 December 2023


Higher Invariants Oberseminar (HIOB 8)

The topic in this semester is index theory. The idea is to understand the classical index theorem of Atiyah-Singer through Connes' groupoid approach while learning higher aspects of C^{*}-algebra K-theory and Lie groupoids.

Dates and location

Mondays, 12-14, SFB Seminar Room.

Talks

If you are interested in giving a talk in this seminar, please contact U. Bunke.


  Date Title Speaker
15. Oct The classical index theorem J. Gloeckle
22. Oct The family version and the Riemann-Roch theorem N. Otoba
29. Oct Dirac operators J. Seipel
05. Nov Geometric applications of the index theorem for Dirac operators B. Ammann
12. Nov K-theory of C^∗-algebras G. Tamme
19. Nov Kasparov KK-theory
26. Nov The KK-category A. Engel
3. Dez Duality M. Land
10. Dez. Crossed products and Connes’ Thom isomorphism C. Dahlhausen
17. Dez Lie groupoids K. Nguyen
7. Jan C∗-algebras associated to Lie groupoids K. Bohlen
14. Jan Deformation to the normal cone
21. Jan Proof of the families index theorem (a la Connes)
28. Jan The Baum-Connes conjecture S. Echterhoff (Münster)
4. Feb Discussion of the topic for HIOB SS 2019


Previous instances of HIOB

Personal Tools
  • Log in

  • Wiki Tools
  • Page
  • Discussion
  • View source
  • History