

HomeAboutPeopleEventsResearchRTGGuest ProgrammeImpressum
From SFB1085 - Higher Invariants
Jump to navigationJump to search (Created page with "__NOTOC__ ==Motivic sheaves== This semester in the seminar we will discuss topics around the Euler–Poincaré characteristic and the Grothendieck–Ogg–Shafarevich formul...") |
(No difference)
|
Latest revision as of 15:15, 6 May 2022
Motivic sheaves
This semester in the seminar we will discuss topics around the Euler–Poincaré characteristic and the Grothendieck–Ogg–Shafarevich formula.
References:
- G. Laumon, Transformation de Fourier homogène, Bulletin SMF 2013, numdam.
- L. Illusie, Théorie de Brauer et caractéristique d'Euler-Poincaré, Asterisque 82-83, numdam.
- G. Laumon, Semi-continuité du conducteur de Swan, Asterisque 82-83, numdam.
- R. MacPherson, Chern classes for singular algebraic varieties, Annals 1974, jstor.
Time and place
Do 14-16, M 103
Talks
| Date | Title | Speaker | |
| 8. | Nov | Motivic Fourier transform I | Masoud Zargar |
| 15. | Nov | Motivic Fourier transform II | Adeel Khan |
| 29. | Nov | Motivic Fourier transform III | Adeel Khan |
| 6. | Dez | Background on Swan conductors and vanishing cycles | Benedikt Preis |
| 13. | Dez | Motivic Fourier transform IV | Masoud Zargar |
| 20. | Dez | The Grothendieck–Ogg–Shafarevich formula | Veronika Ertl |
| 10. | Jan | Brauer theory and the Euler-Poincaré characteristic (notes) | Federico Binda |
| 17. | Jan | Constructibility of the Swan conductor | Benedikt Preis |
| 24. | Jan | A base change theorem | Kévin François |
| 31. | Jan | Deformation of coverings | Yigeng Zhao |
| 7. | Feb | Semi-continuity of the Swan conductor | Benedikt Preis |