

HomeAboutPeopleEventsResearchRTGGuest ProgrammeImpressum
No edit summary |
No edit summary |
||
Line 37: | Line 37: | ||
|06.11.2024 | |06.11.2024 | ||
|'''Divided power structures.''' | |'''Divided power structures.''' | ||
Discuss some basic algebraic preliminaries on divided powers, following P. Berthelot and A. Ogus<ref name"BO78"> P. Berthelot, A. Ogus. Notes on crystalline cohomology, Princeton University Press, Princeton, NJ; | Discuss some basic algebraic preliminaries on divided powers, following P. Berthelot and A. Ogus<ref name"BO78">P. Berthelot, A. Ogus. Notes on crystalline cohomology, Princeton University Press, Princeton, NJ; | ||
University of Tokyo Press, Tokyo, vi+243 pp (1978).</ref>, §3. More precisely cover 3.1 – 3.5, explain Theorem 3.9 about the divided power algebra without proof, explain extensions and compatible PD-structures 3.14 – 3.17. Discuss PD-envelopes in 3.19. Only sketch the construction if time permits. Cover 3.21 – 3.22, Definitions 3.24 and 3.29, Finally, briefly discuss how to globalize to schemes. | University of Tokyo Press, Tokyo, vi+243 pp (1978).</ref>, §3. More precisely cover 3.1 – 3.5, explain Theorem 3.9 about the divided power algebra without proof, explain extensions and compatible PD-structures 3.14 – 3.17. Discuss PD-envelopes in 3.19. Only sketch the construction if time permits. Cover 3.21 – 3.22, Definitions 3.24 and 3.29, Finally, briefly discuss how to globalize to schemes. | ||
|Lukas Prader | |Lukas Prader |
Revision as of 11:11, 14 October 2024
Winter Semester 24/25
Oberseminar - Explicit reciprocity laws and applications.
Time and place: Wednesday 10-12, SFB Lecture Hall (M311). [ Explicit reciprocity laws and applications, programme]
No | Date | Title / Abstract | Speaker |
---|---|---|---|
1 | 16.10.2024 | p-divisible groups.
Briefly discuss the (co)tangent space and differentials for affine group schemes following G. Tamme[1], 1.1. Define p-divisible groups following loc. cit., 1.3. Discuss section 2.2. Finally explain the relation between p-divisible groups and formal groups by explaining M. Morrow[2], Proposition 4.12. For time reasons, you may focus on how to obtain a p-divisible group from a formal group. |
Christoph Fronhöfer |
2 | 23.10.2024 | The universal vector extension.
Cover G. Tamme[1], 1.2 on vector groups, section 1.4 on the universal vector extension of a p-divisible group and finally section 2.3 on the module ωE. |
Julio de Mello Bezerra |
3 | 30.10.2024 | The period pairing and Hodge-Tate decomposition.
Introduce the ring A1inf following G. Tamme[1], 2.1. Define the period pairing following section 3.1. Finally deduce the Hodge-Tate decomposition in section 3.2. |
Julio de Mello Bezerra |
4 | 06.11.2024 | Divided power structures.
Discuss some basic algebraic preliminaries on divided powers, following P. Berthelot and A. Ogus[3], §3. More precisely cover 3.1 – 3.5, explain Theorem 3.9 about the divided power algebra without proof, explain extensions and compatible PD-structures 3.14 – 3.17. Discuss PD-envelopes in 3.19. Only sketch the construction if time permits. Cover 3.21 – 3.22, Definitions 3.24 and 3.29, Finally, briefly discuss how to globalize to schemes. |
Lukas Prader |
5 | 13.11.2024 | Crystalline cohomology.
Introduce the crystalline site and topos following P. Berthelot and A. Ogus Cite error: Invalid |
Chiara Sabadin |
6 | 20.11.2024 | PD-differential operators.
Cover P. Berthelot and A. Ogus Cite error: Invalid |
tba |
7 | 27.11.2024 | Crystals.
P. Berthelot and A. Ogus Cite error: Invalid |
tba |
8 | 04.12.2024 | Cohomology of crystals and de Rham cohomology.
Explain P. Berthelot and A. Ogus Cite error: Invalid |
Zhenghang Du |
9 | 11.12.2024 | The crystals E(G0), E(G0) and D(G0) (optional)
Explain the definition of the crystals E(G0), E(G0) and D(G0) following [Mes72], IV, 2.0 – 2.5. Explain the necessary definitions and results about exponentials from Chapter III. The key result which will be proven later is Theorem 2.2. |
tba |
10 | 18.12.2024 | Proof of W. Messing [4], IV, Theorem 2.2. (optional)
Explain the proof of W. Messing [4], IV, Theorem 2.2 given in loc. cit., 2.6 and 2.7. For this you may also need to explain some results about the formal completion E(G) of the universal vector extension of a p-divisible group following W. Messing [4], IV, 1.16 – 1.22. |
tba |
11 | 08.01.2025 | BdR and the dual exponential map.
Explain [Kat93], Chapter II, §1.1 where a construction of Fontaine’s period ring BdR is given and the formalism of de Rham representations is explained. Proceed to discuss §1.2 on dual exponential maps. |
Christoph Fronhöfer |
12 | 15.01.2025 | The explicit reciprocity law I.
The aim of this and the next talk is to prove the explicit reciprocity law [Kat93], Theorem 2.1.7. |
tba |
13 | 22.01.2025 | The explicit reciprocity law II.
Continuation of Talk 12. |
tba |
14 | 29.01.2025 | Relation to special L-values I.
By using the explicit reciprocity law, explain and prove [Kat93], Theorem 1.2.6. |
tba |
15 | 05.02.2025 | Relation to special L-values II.
Continuation of Talk 14. |
tba |
Winter Semester 23/24
Oberseminar - Euler systems
Time and place: Thursday 10-12, SFB Lecture Hall. Programme
No | Date | Title / Abstract | Speaker |
---|---|---|---|
1 | 19.10.2023 | Euler systems and main results. | Zhenghang Du |
2 | 26.10.2023 | Euler systems and main results. | Zhenghang Du |
3 | 02.11.2023 | Example: cyclotomic units. | Chiara Sabadin |
4 | 09.11.2023 | Example: elliptic curves with CM I. | Christoph Fronhöfer |
5 | 16.11.2023 | Example: elliptic curves with CM II. | TBA |
6 | 23.11.2023 | The derivative construction. | Julio de Mello Bezerra |
7 | 30.11.2023 | Local properties of derivative classes. | Guido Kings |
8 | 07.12.2023 | Bounding the order of the Selmer group. | Lukas Prader |
9 | 14.12.2023 | Twisting of Euler systems. | Han-Ung Kufner |
10 | 21.12.2023 | Iwasawa theory I. | Bence Forrás |
11 | 11.01.2024 | Iwasawa theory II. | TBA |
12 | 18.01.2024 | ||
13 | 25.01.2024 | ||
14 | 01.02.2024 |
Summer Semester 23
Oberseminar - Modular Galois representations
Time and place: Thursday 10-12, SFB Lecture Hall.
No | Date | Title / Abstract | Speaker |
---|---|---|---|
1 | 20.04.2023 | Group representations and semi-simple algebras | Chiara Sabadin |
2 | 27.04.2023 | Group representations and semi-simple algebras | Chiara Sabadin |
3 | 04.05.2023 | Representations and pseudo-representations with coefficients in Artin rings | Guillermo Gamarra-Segovia |
4 | 11.05.2023 | Representations and pseudo-representations with coefficients in Artin rings | Guillermo Gamarra-Segovia |
5 | 18.05.2023 | holiday | |
6 | 25.05.2023 | Deformation of group representations | Zhenghang Du |
7 | 01.06.2023 | Deformation of group representations | Zhenghang Du |
8 | 08.06.2023 | holiday | |
9 | 15.06.2023 | The q-expansion principle and p-adic Hecke algebras | Julio de Mello Bezerra |
10 | 22.06.2023 | The q-expansion principle and p-adic Hecke algebras | Julio de Mello Bezerra |
11 | 29.06.2023 | no meeting due to Oberwolfach | |
12 | 06.07.2023 | Modular Galois representations | Lukas Prader |
13 | 13.07.2023 | Taylor-Wiles systems for the Hecke algebra | Guido Kings |
14 | 20.07.2023 | Universal deformation rings and Taylor-Wiles systems | Han-Ung Kufner |
Winter Semester 22/23
AG Seminar - Main conjecture for totally real fields
No | Date | Title / Abstract | Speaker |
---|---|---|---|
1 | 19.10.2022 | The p-adic L-function and the main conjecture | Julio de Mello Bezerra |
2 | 26.10.2022 | The p-adic L-function and the main conjecture (continuation) | Julio de Mello Bezerra |
3 | 02.11.2022 | \Lambda-adic modular forms | Guillermo Gamarra-Segovia |
4 | 09.11.2022 | \Lambda-adic modular forms (continuation) | Guillermo Gamarra-Segovia |
5 | 16.11.2022 | \Lambda-adic Eisenstein series | Lukas Prader |
6 | 23.11.2022 | \Lambda-adic Eisenstein series (continuation) | Lukas Prader |
7 | 30.11.2022 | \Lambda-adic cusp forms | Zhenghang Du |
8 | 07.12.2022 | Galois representations associated to \Lambda-adic forms | Chiara Sabadin |
9 | 14.12.2022 | Galois representations associated to \Lambda-adic forms (continuation) | Chiara Sabadin |
10 | 21.12.2022 | The Eisenstein ideal and stable lattices | Han-Ung Kufner |
11 | 11.01.2023 | The Eisenstein ideal and stable lattices (continuation) | Han-Ung Kufner |
12 | 18.01.2023 | The Eisenstein ideal and stable lattices (continuation) | Han-Ung Kufner |
13 | 01.02.2023 | The Galois representation of a stable lattice | Johannes Sprang |
14 |
References
- ↑ 1.0 1.1 1.2 G. Tamme. Hodge-Tate-Zerlegung für p-divisible Gruppen nach Fontaine, Diploma thesis, Universität Regensburg (2006)
- ↑ M. Morrow. p-Divisible Groups, Uni Bonn lecture notes from winter term 15/16
- ↑ P. Berthelot, A. Ogus. Notes on crystalline cohomology, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, vi+243 pp (1978).
- ↑ 4.0 4.1 4.2 W. Messing. The crystals associated to Barsotti-Tate groups: with applications to Abelian schemes, Lecture Notes in Mathematics. 264. Berlin-Heidelberg-New York: Springer-Verlag. 190 p. (1972).