University of Regensburg
Faculty of Mathematics

HomeAboutPeopleEventsResearchRTGGuest ProgrammeImpressum

From SFB1085 - Higher Invariants
Jump to navigationJump to search
No edit summary
No edit summary
Line 23: Line 23:
|2
|2
|23.10.2024
|23.10.2024
|tba
|Hodge-Tate decomposition for p-divisible groups : The universal vector extension./
Cover [Tam06], 1.2 on vector groups, section 1.4 on the universal vector extension of a p-divisible group and finally section 2.3 on the module ωE.
|tba
|tba
|-
|-
|3
|3
|30.10.2024
|30.10.2024
|tba
|Hodge-Tate decomposition for p-divisible groups : The period pairing and Hodge-Tate decomposition.
Introduce the ring A1 inf following [Tam06], 2.1. Define the period pairing following section 3.1. Finally deduce the Hodge-Tate decomposition in section 3.2.
|tba
|tba
|-
|-
|4
|4
|06.11.2024
|06.11.2024
|tba
|Crystalline cohomology : Divided power structures. /
Discuss some basic algebraic preliminaries on divided powers, following [BO78], §3. More precisely cover 3.1 – 3.5, explain Theorem 3.9 about the divided power algebra without proof, explain extensions and compatible PD-structures 3.14 – 3.17. Discuss PD-envelopes in 3.19. Only sketch the construction if time permits. Cover 3.21 – 3.22, Definitions 3.24 and 3.29, Finally, briefly discuss how to globalize to schemes.
|tba
|tba
|-
|-
|5
|5
|13.11.2024
|13.11.2024
|tba
|Crystalline cohomology : Crystalline cohomology. /
Introduce the crystalline site and topos following [BO78], §5 until Example 5.2. Briefly sketch the construction of g∗ crys and gcrys,∗ given in 5.6 – 5.8 and state Proposition 5.9. Define global sections and crystalline cohomology in Definition 5.15 and the discussion following it. Define the morphisms of topoi uX/S and iX/S relating the crystalline and Zariski topos. Show Propositions 5.25 – 5.27. Minimize the amount of the categorical nonsense before that.
|TBA
|TBA
|-
|-

Revision as of 10:28, 8 October 2024



Winter  Semester 24/25 

Oberseminar - Explicit reciprocity laws and applications.

Time and place: Wednesday 10-12, SFB Lecture Hall (M311). [ Explicit reciprocity laws and applications programme will come in september ]


No Date Title / Abstract Speaker
1 16.10.2024 Hodge-Tate decomposition for p-divisible groups : p-divisible groups./

Briefly discuss the (co)tangent space and differentials for affine group schemes following [Tam06], 1.1. Define p-divisible groups following loc. cit., 1.3. Discuss section 2.2. Finally explain the relation between p-divisible groups and formal groups by explaining [Mor16], Proposition 4.12. For time reasons, you may focus on how to obtain a p-divisible group from a formal group.

tba
2 23.10.2024 Hodge-Tate decomposition for p-divisible groups : The universal vector extension./

Cover [Tam06], 1.2 on vector groups, section 1.4 on the universal vector extension of a p-divisible group and finally section 2.3 on the module ωE.

tba
3 30.10.2024 Hodge-Tate decomposition for p-divisible groups : The period pairing and Hodge-Tate decomposition.

Introduce the ring A1 inf following [Tam06], 2.1. Define the period pairing following section 3.1. Finally deduce the Hodge-Tate decomposition in section 3.2.

tba
4 06.11.2024 Crystalline cohomology : Divided power structures. /

Discuss some basic algebraic preliminaries on divided powers, following [BO78], §3. More precisely cover 3.1 – 3.5, explain Theorem 3.9 about the divided power algebra without proof, explain extensions and compatible PD-structures 3.14 – 3.17. Discuss PD-envelopes in 3.19. Only sketch the construction if time permits. Cover 3.21 – 3.22, Definitions 3.24 and 3.29, Finally, briefly discuss how to globalize to schemes.

tba
5 13.11.2024 Crystalline cohomology : Crystalline cohomology. /

Introduce the crystalline site and topos following [BO78], §5 until Example 5.2. Briefly sketch the construction of g∗ crys and gcrys,∗ given in 5.6 – 5.8 and state Proposition 5.9. Define global sections and crystalline cohomology in Definition 5.15 and the discussion following it. Define the morphisms of topoi uX/S and iX/S relating the crystalline and Zariski topos. Show Propositions 5.25 – 5.27. Minimize the amount of the categorical nonsense before that.

TBA
6 20.11.2024 tba tba
7 27.11.2024 tba tba
8 04.12.2024 tba tba
9 11.12.2024 tba tba
10 18.12.2024 tba tba
11 15.01.2025 tba TBA
12 22.01.2025
13 29.01.2025
14 05.02.2025





Winter Semester 23/24 

Oberseminar - Euler systems

Time and place: Thursday 10-12, SFB Lecture Hall. Programme


No Date Title / Abstract Speaker
1 19.10.2023 Euler systems and main results. Zhenghang Du
2 26.10.2023 Euler systems and main results. Zhenghang Du
3 02.11.2023 Example: cyclotomic units. Chiara Sabadin
4 09.11.2023 Example: elliptic curves with CM I. Christoph Fronhöfer
5 16.11.2023 Example: elliptic curves with CM II. TBA
6 23.11.2023 The derivative construction. Julio de Mello Bezerra
7 30.11.2023 Local properties of derivative classes. Guido Kings
8 07.12.2023 Bounding the order of the Selmer group. Lukas Prader
9 14.12.2023 Twisting of Euler systems. Han-Ung Kufner
10 21.12.2023 Iwasawa theory I. Bence Forrás
11 11.01.2024 Iwasawa theory II. TBA
12 18.01.2024
13 25.01.2024
14 01.02.2024





Summer Semester 23 

Oberseminar - Modular Galois representations

Time and place: Thursday 10-12, SFB Lecture Hall.

No Date Title / Abstract Speaker
1 20.04.2023 Group representations and semi-simple algebras Chiara Sabadin
2 27.04.2023 Group representations and semi-simple algebras Chiara Sabadin
3 04.05.2023 Representations and pseudo-representations with coefficients in Artin rings Guillermo Gamarra-Segovia
4 11.05.2023 Representations and pseudo-representations with coefficients in Artin rings Guillermo Gamarra-Segovia
5 18.05.2023 holiday
6 25.05.2023 Deformation of group representations Zhenghang Du
7 01.06.2023 Deformation of group representations Zhenghang Du
8 08.06.2023 holiday
9 15.06.2023 The q-expansion principle and p-adic Hecke algebras Julio de Mello Bezerra
10 22.06.2023 The q-expansion principle and p-adic Hecke algebras Julio de Mello Bezerra
11 29.06.2023 no meeting due to Oberwolfach
12 06.07.2023 Modular Galois representations Lukas Prader
13 13.07.2023 Taylor-Wiles systems for the Hecke algebra Guido Kings
14 20.07.2023 Universal deformation rings and Taylor-Wiles systems Han-Ung Kufner





Winter Semester 22/23 

AG Seminar - Main conjecture for totally real fields

No Date Title / Abstract Speaker
1 19.10.2022 The p-adic L-function and the main conjecture Julio de Mello Bezerra
2 26.10.2022 The p-adic L-function and the main conjecture (continuation) Julio de Mello Bezerra
3 02.11.2022 \Lambda-adic modular forms Guillermo Gamarra-Segovia
4 09.11.2022 \Lambda-adic modular forms (continuation) Guillermo Gamarra-Segovia
5 16.11.2022 \Lambda-adic Eisenstein series Lukas Prader
6 23.11.2022 \Lambda-adic Eisenstein series (continuation) Lukas Prader
7 30.11.2022 \Lambda-adic cusp forms Zhenghang Du
8 07.12.2022 Galois representations associated to \Lambda-adic forms Chiara Sabadin
9 14.12.2022 Galois representations associated to \Lambda-adic forms (continuation) Chiara Sabadin
10 21.12.2022 The Eisenstein ideal and stable lattices Han-Ung Kufner
11 11.01.2023 The Eisenstein ideal and stable lattices (continuation) Han-Ung Kufner
12 18.01.2023 The Eisenstein ideal and stable lattices (continuation) Han-Ung Kufner
13 01.02.2023 The Galois representation of a stable lattice Johannes Sprang
14
Personal Tools
  • Log in

  • Wiki Tools
  • Page
  • Discussion
  • View source
  • History