

HomeAboutPeopleEventsResearchRTGGuest ProgrammeImpressum
From SFB1085 - Higher Invariants
Jump to navigationJump to searchNo edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
'''Oberseminar - Explicit reciprocity laws and applications.''' | '''Oberseminar - Explicit reciprocity laws and applications.''' | ||
'''Time and place:''' Wednesday 10-12, SFB Lecture Hall. | '''Time and place:''' Wednesday 10-12, SFB Lecture Hall (M311). | ||
[ Explicit reciprocity laws and applications programme will come in september ] | [ Explicit reciprocity laws and applications programme will come in september ] | ||
Line 17: | Line 17: | ||
|1 | |1 | ||
|16.10.2024 | |16.10.2024 | ||
| | |Hodge-Tate decomposition for p-divisible groups : p-divisible groups./ Briefly discuss the (co)tangent space and differentials for affine group schemes following [Tam06], | ||
1.1. Define p-divisible groups following loc. cit., 1.3. Discuss section 2.2. Finally explain the | |||
relation between p-divisible groups and formal groups by explaining [Mor16], Proposition 4.12. | |||
For time reasons, you may focus on how to obtain a p-divisible group from a formal group. | |||
|tba | |tba | ||
|- | |- |
Revision as of 10:24, 8 October 2024
Winter Semester 24/25
Oberseminar - Explicit reciprocity laws and applications.
Time and place: Wednesday 10-12, SFB Lecture Hall (M311). [ Explicit reciprocity laws and applications programme will come in september ]
No | Date | Title / Abstract | Speaker |
---|---|---|---|
1 | 16.10.2024 | Hodge-Tate decomposition for p-divisible groups : p-divisible groups./ Briefly discuss the (co)tangent space and differentials for affine group schemes following [Tam06],
1.1. Define p-divisible groups following loc. cit., 1.3. Discuss section 2.2. Finally explain the relation between p-divisible groups and formal groups by explaining [Mor16], Proposition 4.12. For time reasons, you may focus on how to obtain a p-divisible group from a formal group. |
tba |
2 | 23.10.2024 | tba | tba |
3 | 30.10.2024 | tba | tba |
4 | 06.11.2024 | tba | tba |
5 | 13.11.2024 | tba | TBA |
6 | 20.11.2024 | tba | tba |
7 | 27.11.2024 | tba | tba |
8 | 04.12.2024 | tba | tba |
9 | 11.12.2024 | tba | tba |
10 | 18.12.2024 | tba | tba |
11 | 15.01.2025 | tba | TBA |
12 | 22.01.2025 | ||
13 | 29.01.2025 | ||
14 | 05.02.2025 |
Winter Semester 23/24
Oberseminar - Euler systems
Time and place: Thursday 10-12, SFB Lecture Hall. Programme
No | Date | Title / Abstract | Speaker |
---|---|---|---|
1 | 19.10.2023 | Euler systems and main results. | Zhenghang Du |
2 | 26.10.2023 | Euler systems and main results. | Zhenghang Du |
3 | 02.11.2023 | Example: cyclotomic units. | Chiara Sabadin |
4 | 09.11.2023 | Example: elliptic curves with CM I. | Christoph Fronhöfer |
5 | 16.11.2023 | Example: elliptic curves with CM II. | TBA |
6 | 23.11.2023 | The derivative construction. | Julio de Mello Bezerra |
7 | 30.11.2023 | Local properties of derivative classes. | Guido Kings |
8 | 07.12.2023 | Bounding the order of the Selmer group. | Lukas Prader |
9 | 14.12.2023 | Twisting of Euler systems. | Han-Ung Kufner |
10 | 21.12.2023 | Iwasawa theory I. | Bence Forrás |
11 | 11.01.2024 | Iwasawa theory II. | TBA |
12 | 18.01.2024 | ||
13 | 25.01.2024 | ||
14 | 01.02.2024 |
Summer Semester 23
Oberseminar - Modular Galois representations
Time and place: Thursday 10-12, SFB Lecture Hall.
No | Date | Title / Abstract | Speaker |
---|---|---|---|
1 | 20.04.2023 | Group representations and semi-simple algebras | Chiara Sabadin |
2 | 27.04.2023 | Group representations and semi-simple algebras | Chiara Sabadin |
3 | 04.05.2023 | Representations and pseudo-representations with coefficients in Artin rings | Guillermo Gamarra-Segovia |
4 | 11.05.2023 | Representations and pseudo-representations with coefficients in Artin rings | Guillermo Gamarra-Segovia |
5 | 18.05.2023 | holiday | |
6 | 25.05.2023 | Deformation of group representations | Zhenghang Du |
7 | 01.06.2023 | Deformation of group representations | Zhenghang Du |
8 | 08.06.2023 | holiday | |
9 | 15.06.2023 | The q-expansion principle and p-adic Hecke algebras | Julio de Mello Bezerra |
10 | 22.06.2023 | The q-expansion principle and p-adic Hecke algebras | Julio de Mello Bezerra |
11 | 29.06.2023 | no meeting due to Oberwolfach | |
12 | 06.07.2023 | Modular Galois representations | Lukas Prader |
13 | 13.07.2023 | Taylor-Wiles systems for the Hecke algebra | Guido Kings |
14 | 20.07.2023 | Universal deformation rings and Taylor-Wiles systems | Han-Ung Kufner |
Winter Semester 22/23
AG Seminar - Main conjecture for totally real fields
No | Date | Title / Abstract | Speaker |
---|---|---|---|
1 | 19.10.2022 | The p-adic L-function and the main conjecture | Julio de Mello Bezerra |
2 | 26.10.2022 | The p-adic L-function and the main conjecture (continuation) | Julio de Mello Bezerra |
3 | 02.11.2022 | \Lambda-adic modular forms | Guillermo Gamarra-Segovia |
4 | 09.11.2022 | \Lambda-adic modular forms (continuation) | Guillermo Gamarra-Segovia |
5 | 16.11.2022 | \Lambda-adic Eisenstein series | Lukas Prader |
6 | 23.11.2022 | \Lambda-adic Eisenstein series (continuation) | Lukas Prader |
7 | 30.11.2022 | \Lambda-adic cusp forms | Zhenghang Du |
8 | 07.12.2022 | Galois representations associated to \Lambda-adic forms | Chiara Sabadin |
9 | 14.12.2022 | Galois representations associated to \Lambda-adic forms (continuation) | Chiara Sabadin |
10 | 21.12.2022 | The Eisenstein ideal and stable lattices | Han-Ung Kufner |
11 | 11.01.2023 | The Eisenstein ideal and stable lattices (continuation) | Han-Ung Kufner |
12 | 18.01.2023 | The Eisenstein ideal and stable lattices (continuation) | Han-Ung Kufner |
13 | 01.02.2023 | The Galois representation of a stable lattice | Johannes Sprang |
14 |