University of Regensburg
Faculty of Mathematics

HomeAboutPeopleEventsResearchRTGGuest ProgrammeImpressum

From SFB1085 - Higher Invariants
Jump to navigationJump to search
No edit summary
No edit summary
Line 116: Line 116:
* [http://www.mathematik.uni-regensburg.de/ammann/ B. Ammann], [http://homepages.uni-regensburg.de/~glj57400/ J. Glöckle], [http://www.mathematik.uni-regensburg.de/ammann/preprints/lorentzdec/ Dominant energy condition and spinors on Lorentzian manifolds], [https://arxiv.org/abs/2103.11032 arXiv:2103.11032]; 03/2021.
* [http://www.mathematik.uni-regensburg.de/ammann/ B. Ammann], [http://homepages.uni-regensburg.de/~glj57400/ J. Glöckle], [http://www.mathematik.uni-regensburg.de/ammann/preprints/lorentzdec/ Dominant energy condition and spinors on Lorentzian manifolds], [https://arxiv.org/abs/2103.11032 arXiv:2103.11032]; 03/2021.


* [http://www.mathematik.uni-regensburg.de/kerz/ M. Kerz], S. Saito, G. Tamme. K-theory of non-archimedean rings II. [https://arxiv.org/abs/2103.06711 arXiv:2103.06711]; 03/2021
* [https://kerz.app.uni-regensburg.de/ M. Kerz], S. Saito, G. Tamme. K-theory of non-archimedean rings II. [https://arxiv.org/abs/2103.06711 arXiv:2103.06711]; 03/2021


* [https://hk-nguyen-math.github.io/ H. K. Nguyen], [https://graptismath.net/index.html G. Raptis], C. Schrade. Higher weak (co)limits, adjoint functor theorems, and higher Brown representability, [https://arxiv.org/abs/2103.06003 arXiv:2103.06003]; 03/2021
* [https://hk-nguyen-math.github.io/ H. K. Nguyen], [https://graptismath.net/index.html G. Raptis], C. Schrade. Higher weak (co)limits, adjoint functor theorems, and higher Brown representability, [https://arxiv.org/abs/2103.06003 arXiv:2103.06003]; 03/2021
Line 134: Line 134:
* [https://sites.google.com/view/rahul-gupta-math/welcome R. Gupta], A. Krishna, Idele class groups with modulus, [https://arxiv.org/abs/2101.04609 arXiv:2101.04609]; 01/2021
* [https://sites.google.com/view/rahul-gupta-math/welcome R. Gupta], A. Krishna, Idele class groups with modulus, [https://arxiv.org/abs/2101.04609 arXiv:2101.04609]; 01/2021


* H. Esnault, [http://www.mathematik.uni-regensburg.de/kerz M. Kerz]. Local systems with quasi-unipotent monodromy at infinity are dense, [https://arxiv.org/abs/2101.00487 arXiv:2101.00487]; 01/2021
* H. Esnault, [https://kerz.app.uni-regensburg.de/ M. Kerz]. Local systems with quasi-unipotent monodromy at infinity are dense, [https://arxiv.org/abs/2101.00487 arXiv:2101.00487]; 01/2021


=== 2020 ===
=== 2020 ===
Line 286: Line 286:
* N.Sardari, [https://sites.google.com/view/masoudzargar M.Zargar], Sections of quadrics over A^1_{F_q}, [https://arxiv.org/abs/1907.07839v2 arXiv:1907.07839]; 08/2019
* N.Sardari, [https://sites.google.com/view/masoudzargar M.Zargar], Sections of quadrics over A^1_{F_q}, [https://arxiv.org/abs/1907.07839v2 arXiv:1907.07839]; 08/2019


* H. Esnault, [http://www.mathematik.uni-regensburg.de/kerz/index.html M. Kerz], Etale cohomology of rank one l-adic local systems in positive characteristic, [https://arxiv.org/abs/1908.08291 arxiv:1908.08291]; 08/2019
* H. Esnault, [https://kerz.app.uni-regensburg.de/ M. Kerz], Etale cohomology of rank one l-adic local systems in positive characteristic, [https://arxiv.org/abs/1908.08291 arxiv:1908.08291]; 08/2019


*[https://homepages.uni-regensburg.de/~ngh60713/ H.K.Nguyen], Covariant & Contravariant Homotopy Theories, [https://arxiv.org/abs/1908.06879 arxiv:1908.06879]; 08/2019
*[https://homepages.uni-regensburg.de/~ngh60713/ H.K.Nguyen], Covariant & Contravariant Homotopy Theories, [https://arxiv.org/abs/1908.06879 arxiv:1908.06879]; 08/2019
Line 334: Line 334:
* [https://www.math.bgu.ac.il/~brandens/ M. Brandenbursky], [http://www.math.uni.wroc.pl/~marcinkow/ M. Marcinkowski]. Bounded cohomology of transformation groups. [https://arxiv.org/abs/1902.11067 arXiv:1902.11067 math.GT]; 02/2019.
* [https://www.math.bgu.ac.il/~brandens/ M. Brandenbursky], [http://www.math.uni.wroc.pl/~marcinkow/ M. Marcinkowski]. Bounded cohomology of transformation groups. [https://arxiv.org/abs/1902.11067 arXiv:1902.11067 math.GT]; 02/2019.


* H. Esnault, [http://www.mathematik.uni-regensburg.de/kerz/index.html M. Kerz], Arithmetic subspaces of moduli spaces of rank one local systems. [https://arxiv.org/abs/1902.02961 arXiv:1902.02961]; 2/2019.
* H. Esnault, [https://kerz.app.uni-regensburg.de/ M. Kerz], Arithmetic subspaces of moduli spaces of rank one local systems. [https://arxiv.org/abs/1902.02961 arXiv:1902.02961]; 2/2019.


* F. Déglise, J. Fasel, F. Jin, [https://www.preschema.com A.A. Khan]. Borel isomorphism and absolute purity. [https://arxiv.org/abs/1902.02055 arXiv:1902.02055]; 02/2019
* F. Déglise, J. Fasel, F. Jin, [https://www.preschema.com A.A. Khan]. Borel isomorphism and absolute purity. [https://arxiv.org/abs/1902.02055 arXiv:1902.02055]; 02/2019
Line 346: Line 346:
* E. Elmanto, [https://www.preschema.com A.A. Khan]. Perfection in motivic homotopy theory. [https://arxiv.org/abs/1812.07506 arXiv:1812.07506]; 12/2018
* E. Elmanto, [https://www.preschema.com A.A. Khan]. Perfection in motivic homotopy theory. [https://arxiv.org/abs/1812.07506 arXiv:1812.07506]; 12/2018


* [http://www.mathematik.uni-regensburg.de/kerz/index.html M. Kerz], [https://homepages.uni-regensburg.de/~stf58529/Welcome.html F. Strunk], G. Tamme, Towards Vorst's conjecture in positive characteristic. [https://arxiv.org/abs/1812.05342 arXiv:1812.05342]; 12/2018.
* [https://kerz.app.uni-regensburg.de/ M. Kerz], [https://homepages.uni-regensburg.de/~stf58529/Welcome.html F. Strunk], G. Tamme, Towards Vorst's conjecture in positive characteristic. [https://arxiv.org/abs/1812.05342 arXiv:1812.05342]; 12/2018.


* F. Binda,S. Saito, Semi-purity for cycles with modulus [https://arxiv.org/abs/1812.01878 arXiv:1812.01878]; 12/2018.
* F. Binda,S. Saito, Semi-purity for cycles with modulus [https://arxiv.org/abs/1812.01878 arXiv:1812.01878]; 12/2018.
Line 380: Line 380:
* [http://markus-land.de M. Land], G. Tamme. On the K-theory of pullbacks. [http://arxiv.org/abs/1808.05559 arXiv:1808.05559 math.KT]; 08/2018
* [http://markus-land.de M. Land], G. Tamme. On the K-theory of pullbacks. [http://arxiv.org/abs/1808.05559 arXiv:1808.05559 math.KT]; 08/2018


* [http://www.mathematik.uni-regensburg.de/kerz/index.html M. Kerz]. On negative algebraic K-groups. [https://eta.impa.br/dl/137.pdf ICM 2018]; 08/2018
* [https://kerz.app.uni-regensburg.de/ M. Kerz]. On negative algebraic K-groups. [https://eta.impa.br/dl/137.pdf ICM 2018]; 08/2018


* D. Fauser, [http://www.mathematik.uni-regensburg.de/friedl/index.html S. Friedl], [http://www.mathematik.uni-regensburg.de/loeh C. Löh]. Integral approximation of simplicial volume of graph manifolds. [https://arxiv.org/abs/1807.10522 arXiv:1807.10522 math.GT]; 07/2018
* D. Fauser, [http://www.mathematik.uni-regensburg.de/friedl/index.html S. Friedl], [http://www.mathematik.uni-regensburg.de/loeh C. Löh]. Integral approximation of simplicial volume of graph manifolds. [https://arxiv.org/abs/1807.10522 arXiv:1807.10522 math.GT]; 07/2018
Line 400: Line 400:
*H.K. Nguyen, [http://graptismath.net/ G. Raptis], C. Schrade, Adjoint functor theorems for infinity categories. [https://arxiv.org/abs/1803.01664 arxiv:1803.01664]; 03/2018
*H.K. Nguyen, [http://graptismath.net/ G. Raptis], C. Schrade, Adjoint functor theorems for infinity categories. [https://arxiv.org/abs/1803.01664 arxiv:1803.01664]; 03/2018


*[http://www.mathematik.uni-regensburg.de/kerz/ M. Kerz], Y. Zhao, Higher ideles and class field theory. [https://arxiv.org/abs/1804.00603 arXiv:1804.00603]; 03/2018
*[https://kerz.app.uni-regensburg.de/ M. Kerz], Y. Zhao, Higher ideles and class field theory. [https://arxiv.org/abs/1804.00603 arXiv:1804.00603]; 03/2018


*[https://www.math.u-psud.fr/~fischler/ S. Fischler], [http://homepages.uni-regensburg.de/~spj54141/ J. Sprang], [http://wain.mi.ras.ru/ W. Zudilin], Many odd zeta values are irrational. [https://arxiv.org/abs/1803.08905 arXiv:1803.08905]; 03/2018
*[https://www.math.u-psud.fr/~fischler/ S. Fischler], [http://homepages.uni-regensburg.de/~spj54141/ J. Sprang], [http://wain.mi.ras.ru/ W. Zudilin], Many odd zeta values are irrational. [https://arxiv.org/abs/1803.08905 arXiv:1803.08905]; 03/2018
Line 412: Line 412:
*[http://homepages.uni-regensburg.de/~spj54141/ J. Sprang], Infinitely many odd zeta values are irrational. By elementary means. [https://arxiv.org/abs/1802.09410 arXiv:1802.09410]; 02/2018
*[http://homepages.uni-regensburg.de/~spj54141/ J. Sprang], Infinitely many odd zeta values are irrational. By elementary means. [https://arxiv.org/abs/1802.09410 arXiv:1802.09410]; 02/2018


* [http://www.mathematik.uni-regensburg.de/kerz/index.html M. Kerz], S. Saito, G. Tamme, K-theory of non-archimedean rings I. [http://arxiv.org/abs/1802.09819 arXiv1802.09819 math.KT]; 02/2018
* [https://kerz.app.uni-regensburg.de/ M. Kerz], S. Saito, G. Tamme, K-theory of non-archimedean rings I. [http://arxiv.org/abs/1802.09819 arXiv1802.09819 math.KT]; 02/2018


* [https://www.preschema.com A.A. Khan], D. Rydh. Virtual Cartier divisors and blow-ups. [https://arxiv.org/abs/1802.05702 arXiv:1802.05702]; 2/2018
* [https://www.preschema.com A.A. Khan], D. Rydh. Virtual Cartier divisors and blow-ups. [https://arxiv.org/abs/1802.05702 arXiv:1802.05702]; 2/2018
Line 526: Line 526:
* [http://www.mathematik.uni-regensburg.de/friedl/index.html S. Friedl]; M. Nagel, P. Orson, M. Powell, Satellites and concordance of knots in 3-manifold [http://arxiv.org/abs/1611.09114 arXiv:1611.09114 math.GT]; 11/2016
* [http://www.mathematik.uni-regensburg.de/friedl/index.html S. Friedl]; M. Nagel, P. Orson, M. Powell, Satellites and concordance of knots in 3-manifold [http://arxiv.org/abs/1611.09114 arXiv:1611.09114 math.GT]; 11/2016


*  [http://www.mathematik.uni-regensburg.de/kerz/index.html M. Kerz], [http://homepages.uni-regensburg.de/~stf58529/Welcome.html F. Strunk], G. Tamme. Algebraic K-theory and descent for blow-ups. [http://arxiv.org/abs/1611.08466 arXiv:1611.08466 math.KT]; 11/2016
*  [https://kerz.app.uni-regensburg.de/ M. Kerz], F. Strunk, G. Tamme. Algebraic K-theory and descent for blow-ups. [http://arxiv.org/abs/1611.08466 arXiv:1611.08466 math.KT]; 11/2016


* N. Otoba; J. Petean, Solutions of the Yamabe equation on harmonic Riemannian submersions, [https://arxiv.org/abs/1611.06709 arXiv:1611.06709 math.DG]; 11/2016
* N. Otoba; J. Petean, Solutions of the Yamabe equation on harmonic Riemannian submersions, [https://arxiv.org/abs/1611.06709 arXiv:1611.06709 math.DG]; 11/2016
Line 554: Line 554:
* [https://gubler.app.uni-regensburg.de/ Gubler, Walter]; Martin, Florent, On Zhang's semipositive metrics. [https://arxiv.org/abs/1608.08030 arXiv:1608.08030]; 08/2016
* [https://gubler.app.uni-regensburg.de/ Gubler, Walter]; Martin, Florent, On Zhang's semipositive metrics. [https://arxiv.org/abs/1608.08030 arXiv:1608.08030]; 08/2016


* [http://www.mathematik.uni-regensburg.de/kerz/index.html M. Kerz], S. Saito, G. Tamme. Towards a non-archimedean analytic analog of the Bass-Quillen conjecture. [https://arxiv.org/abs/1608.00703 arXiv:1608.00703 math.AG]; 08/2016
* [https://kerz.app.uni-regensburg.de/ M. Kerz], S. Saito, G. Tamme. Towards a non-archimedean analytic analog of the Bass-Quillen conjecture. [https://arxiv.org/abs/1608.00703 arXiv:1608.00703 math.AG]; 08/2016


* [http://www.mathematik.uni-regensburg.de/mueller/ O. Müller], A proof of Thorne's Hoop Conjecture for Einstein-Maxwell Theory, [https://arxiv.org/abs/1607.05036 arXiv:1607.05036 math.DG]; 08/2016
* [http://www.mathematik.uni-regensburg.de/mueller/ O. Müller], A proof of Thorne's Hoop Conjecture for Einstein-Maxwell Theory, [https://arxiv.org/abs/1607.05036 arXiv:1607.05036 math.DG]; 08/2016
Line 604: Line 604:
* [http://homepages.uni-regensburg.de/~rao20726 O. Raventós]. Transfinite Adams representability. [http://arxiv.org/abs/1304.3599 arXiv:1304.3599]; new version 02/2016
* [http://homepages.uni-regensburg.de/~rao20726 O. Raventós]. Transfinite Adams representability. [http://arxiv.org/abs/1304.3599 arXiv:1304.3599]; new version 02/2016


* [http://www.mathematik.uni-regensburg.de/kerz/ M. Kerz], [http://homepages.uni-regensburg.de/~stf58529/Welcome.html F. Strunk]. On the vanishing of negative homotopy K-theory [http://arxiv.org/abs/1601.08075 arXiv:1601.08075 math.AG]; 01/2016
* [https://kerz.app.uni-regensburg.de/ M. Kerz], F. Strunk. On the vanishing of negative homotopy K-theory [http://arxiv.org/abs/1601.08075 arXiv:1601.08075 math.AG]; 01/2016


* [http://www.mathematik.uni-regensburg.de/lind/ J. Lind], H. Sati, [http://math.umn.edu/~cwesterl/ C. Westerland].  A higher categorical analogue of topological T-duality for sphere bundles [http://arxiv.org/abs/1601.06285  arXiv:1601.06285 math.AT]; 01/2016
* [http://www.mathematik.uni-regensburg.de/lind/ J. Lind], H. Sati, [http://math.umn.edu/~cwesterl/ C. Westerland].  A higher categorical analogue of topological T-duality for sphere bundles [http://arxiv.org/abs/1601.06285  arXiv:1601.06285 math.AT]; 01/2016
Line 708: Line 708:
* [http://www.mathematik.uni-regensburg.de/friedl/index.html S. Friedl], [http://homepages.uni-regensburg.de/~nam23094/ M. Nagel]. Twisted Reidemeister torsion and the Thurston norm: graph manifolds and finite representations. [http://arxiv.org/pdf/1503.07251 arXiv:1503.07251 math.GT]; 03/2015
* [http://www.mathematik.uni-regensburg.de/friedl/index.html S. Friedl], [http://homepages.uni-regensburg.de/~nam23094/ M. Nagel]. Twisted Reidemeister torsion and the Thurston norm: graph manifolds and finite representations. [http://arxiv.org/pdf/1503.07251 arXiv:1503.07251 math.GT]; 03/2015


* [http://www.mathematik.uni-regensburg.de/kerz/ M. Kerz]. A restriction isomorphism for cycles of relative dimension zero. [http://arxiv.org/abs/1503.08187 arXiv 1503.08187 math.AG]; 03/2015
* [https://kerz.app.uni-regensburg.de/ M. Kerz]. A restriction isomorphism for cycles of relative dimension zero. [http://arxiv.org/abs/1503.08187 arXiv 1503.08187 math.AG]; 03/2015


* [http://homepages.uni-regensburg.de/~nam23094/ M. Nagel], B. Owens. Unlinking information from 4-manifolds. [http://arxiv.org/abs/1503.03092 arXiv 1503.03092 math.GT]; 03/2015
* [http://homepages.uni-regensburg.de/~nam23094/ M. Nagel], B. Owens. Unlinking information from 4-manifolds. [http://arxiv.org/abs/1503.03092 arXiv 1503.03092 math.GT]; 03/2015
Line 722: Line 722:
* A. Engel. Index theory of uniform pseudodifferential operators. [http://arxiv.org/abs/1502.00494 arXiv:1502.00494 math.DG]; 02/2015
* A. Engel. Index theory of uniform pseudodifferential operators. [http://arxiv.org/abs/1502.00494 arXiv:1502.00494 math.DG]; 02/2015


* [http://www.mathematik.uni-regensburg.de/kerz M. Kerz]. Transfinite limits in topos theory. [http://arxiv.org/abs/1502.01923 arXiv:1502.01923 math.CT]; 02/2015
* [https://kerz.app.uni-regensburg.de/ M. Kerz]. Transfinite limits in topos theory. [http://arxiv.org/abs/1502.01923 arXiv:1502.01923 math.CT]; 02/2015


* F. Bambozzi, O. Ben-Bassat. Dagger Geometry As Banach Algebraic Geometry. [http://arxiv.org/abs/1502.01401v1 arXiv:1502.01401v1  math.AG]; 02/2015
* F. Bambozzi, O. Ben-Bassat. Dagger Geometry As Banach Algebraic Geometry. [http://arxiv.org/abs/1502.01401v1 arXiv:1502.01401v1  math.AG]; 02/2015

Revision as of 10:06, 29 August 2023


Topics

Invariants play a dominant role in all of mathematics: Invariants should be fine enough to extract the right information, but coarse enough to be computable in specific cases. Higher invariants are a structural and hierarchical refinement of certain classical invariants. The long term goal of this Collaborative Research Centre is to formulate the principles of construction and computation of higher invariants in a systematic way.

  • Higher Chern classes
  • Volumes, L-functions, and polylogarithms
  • Metric structures on cohomology, vector bundles, and cycles
  • Higher categories and enriched structures

Projects and principal investigators

Publications/Preprints (in reverse chronological order)

2023

  • C. Löh. Exponential growth rates in hyperbolic groups (after Koji Fujiwara and Zlil Sela), Exposée 1206 for the Séminaire Bourbaki (April 2023), arXiv:2304.04424 math.GR; 04/2023
  • R. Gualdi. ¿Cuántas raíces de la unidad anulan un polinomio en dos variables?, La Gaceta de la Real Sociedad Matemática Española 26 (2023), 149 — 172; 02/2023 (divulgative article)
  • C. Löh. A comment on the structure of graded modules over graded principal ideal domains in the context of persistent homology, arXiv:2301.11756 math.AC; 01/2023

2022

  • A. Hogadi, S. Yadav. \A^1 connectivity of moduli of vector bundles on a curve. arXiv:2110.05799v2; 12/22 (updated and final version)
  • D. Beraldo, M. Pippi. Non-commutative intersection theory and unipotent Deligne-Milnor formula, arXiv:2211.11717 math.AG; 11/2022.
  • D.-C. Cisinski, M. Pippi. Étale tame vanishing cycles over [A^1_S/G_{m,S}], arXiv:2209.13381; 09/2022.

2021

  • A. A. Khan, C. Ravi. Generalized cohomology theories for algebraic stacks. arXiv:2106.15001; 06/2021
  • F. Hanisch, M. Ludewig. A Rigorous Construction of the Supersymmetric Path Integral Associated to a Compact Spin Manifold. arXiv:1709.10027; 03/2021
  • B. Güneysu, M. Ludewig. The Chern Character of theta-summable Fredholm Modules over dg Algebras and Localization on Loop Space. arXiv:1901.04721; 03/2021

2020

  • B. Ammann, J. Mougel, V. Nistor. A regularity result for the bound states of N-body Schrödinger operators: Blow-ups and Lie manifolds arXiv:2012.13902; 12/2020.
  • J.I. Burgos Gil, S. Goswami, G. Pearlstein. Height Pairing on Higher Cycles and Mixed Hodge Structures. Proceedings of the London Mathematical Society, 125 (2022), Issue 1, 61-170 [1].
  • S.Balchin, J.P.C. Greenlees, L. Pol, J. Williamson. Torsion model for tensor triangulated categories: the one-step case. arXiv:2011.10413; 11/2020
  • T. Bachmann, A. A. Khan, C. Ravi, V. Sosnilo. Categorical Milnor squares and K-theory of algebraic stacks. arXiv:2011.04355; 11/2020
  • P. Dolce, R. Gualdi, Numerical equivalence of ℝ-divisors and Shioda-Tate formula for arithmetic varieties, arXiv:2010.16134; 10/2020
  • M. Ludewig, Z. Yi, A Short Proof of the Localization Formula for the Loop Space Chern Character of Spin Manifolds, arXiv:2010.05892; 10/2020.
  • C. Ravi, B. Sreedhar. Virtual equivariant Grothendieck-Riemann-Roch formula. arXiv:2009.09697; 09/2020
  • B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, K. Moi, M. Land, D. Nardin, T. Nikolaus, W. Steimle. Hermitian K-theory for stable ∞-categories III: Grothendieck-Witt groups of rings arXiv:2009.07225; 09/2020
  • M. Ludewig, G. C. Thiang. Gaplessness of Landau Hamiltonians on hyperbolic half-planes via coarse geometry. arXiv:2009.07688; 09/2020. To appear in Comm. Math. Phys.
  • B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, K. Moi, M. Land, D. Nardin, T. Nikolaus, W. Steimle. Hermitian K-theory for stable ∞-categories II: Cobordism categories and additivity arXiv:2009.07224; 09/2020
  • B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, K. Moi, M. Land, D. Nardin, T. Nikolaus, W. Steimle. Hermitian K-theory for stable ∞-categories I: Foundations arXiv:2009.07223; 09/2020
  • Y. Kezuka, Tamagawa number divisibility of central L-values of twists of the Fermat elliptic curve. arXiv:2003.02772 math.NT; 08/2020
  • S. Baader, R. Blair, A. Kjuchukova and F. Misev. The bridge number of arborescent links with many twigs. arXiv:2008.00763; 08/2020
  • S. Friedl, T. Kitayama, L. Lewark, M. Nagel and M. Powell. Homotopy ribbon concordance, Blanchfield pairings, and twisted Alexander polynomials. arXiv:2007.15289; 08/2020
  • G. Herrmann and J. P. Quintanilha. The Complex of Hypersurfaces in a Homology Class. arXiv:2007.00522; 07/2020
  • M. Ludewig, S. Roos. The Chiral Anomaly of the Free Fermion in Functorial Field Theory. arXiv:2010.05892; Ann. Henri Poincare, 21:1191-1233, 06/2020.
  • M. Ludewig, G. C. Thiang. Good Wannier bases in Hilbert modules associated to topological insulators. arXiv:1904.13051; J. Math. Phys., 61, 061902, 06/2020.
  • H. Esnault and M. Kerz. Density of Arithmetic Representations of Function Fields. arXiv:2005.12819; 05/2020
  • S. Boucksom, W. Gubler, F. Martin. Differentiability of relative volumes over an arbitrary non-archimedean field. arXiv:2004.03847; 04/2020
  • C. Löh. Ergodic theoretic methods in group homology. A minicourse on L2-Betti numbers in group theory. SpringerBriefs in Mathematics, Springer, DOI 10.1007/978-3-030-44220-0 03/2020.
  • T. Barthel, D. Heard, N. Castellana, G. Valenzuela. Local Gorenstein duality for cochains on spaces. arXiv:2001.02580; 01/2020. Journal of Pure and Applied Algebra, Volume 225, Issue 2, February 2021
  • M. Ludewig, A. Stoffel. A framework for geometric field theories and their classification in dimension one. arXiv:2001.05721; 01/2020.


2019

  • M. Moraschini, Alessio Savini. Multiplicative constants and maximal measurable cocycles in bounded cohomology. arXiv:1912.09731; 12/2019
  • R. Frigerio, M. Moraschini. Gromov's theory of multicomplexes with applications to bounded cohomology and simplicial volume, arXiv:1808.07307 math.GT; 12/2019; To appear in Memoirs of the American Mathematical Society.
  • Y. Kezuka, Y. Li, A classical family of elliptic curves having rank one and the 2-primary part of their Tate-Shafarevich group non-trivial. arXiv:1911.04532 math.NT; 11/2019
  • S. Friedl, M. Nagel, P. Orson, M. Powell. A survey of the foundations of four-manifold theory in the topological category. arXiv:1910.07372; 10/2019
  • V. Wanner, Energy Minimization Principle for non-archimedean curves. arXiv:1909.11335; 09/2019.
  • M. Moraschini, Alessio Savini. A Matsumoto-Mostow result for Zimmer's cocycles of hyperbolic lattices. arXiv:1909.00846; 09/2019 To appear in Transformation Groups.
  • Imre Bokor, Diarmuid Crowley, S. Friedl, Fabian Hebestreit, Daniel Kasprowski, Markus Land, Johnny Nicholson Connected sum decompositions of high-dimensional manifolds. arXiv:1909.02628; 09/2019
  • M. Lüders, Algebraization for zero-cycles and the p-adic cycle class map, Mathematical Research Letters, Volume 26 (2019) Number 2, pp. 557-585.
  • M. Lüders, A restriction isomorphism for zero cyclces with coefficients in Milnor K-theory, Cambridge Journal of Mathematics, Volume 7 (2019) Number 1-2, pp. 1-31.
  • H. Esnault, M. Kerz, Etale cohomology of rank one l-adic local systems in positive characteristic, arxiv:1908.08291; 08/2019
  • Y. Kezuka, On the main conjecture of Iwasawa theory for certain non-cyclotomic ℤp-extensions. arXiv:1711.07554 math.NT; J. Lond. Math. Soc., Vol. 100, pp. 107-136, 8/2019
  • Y. Kezuka, J. Choi, Y. Li, Analogues of Iwasawa's μ=0 conjecture and the weak Leopoldt conjecture for a non-cyclotomic ℤ2-extension. arXiv:1711.01697 math.NT; Asian J. Math., Vol. 23, No. 3, pp. 383-400, 7/2019
  • L. Prader, A local–global principle for surjective polynomial maps, arXiv:1909.11690; Journal of Pure and Applied Algebra 223(6), 06/2019, pp. 2371-2381
  • P. Feller, L. Lewark. Balanced algebraic unknotting, linking forms, and surfaces in three- and four-space. arXiv:1905.08305; 05/2019
  • P. Antonini, A. Buss, A. Engel, T. Siebenand. Strong Novikov conjecture for low degree cohomology and exotic group C*-algebras, arXiv:1905.07730 math.KT; 05/2019
  • T. Barthel, D. Heard, N. Castellana, G. Valenzuela. On stratification for spaces with Noetherian mod p cohomology. arxiv:1904.12841; 04/2019
  • K. Bohlen, J. M. Lescure. A geometric approach to K-homology for Lie manifolds, arXiv:1904.04069; 04/2019
  • V. Ertl. A new proof of a vanishing result due to Berthelot, Esnault, and Rülling. arXiv:1805.06269 math.NT; 04/2019 to appear in the Journal of Number Theory.

2018

  • F. Binda,S. Saito, Semi-purity for cycles with modulus arXiv:1812.01878; 12/2018.
  • S. Friedl, JungHwan Park, Bram Petri, Jean Raimbault and Arunima Ray, On distinct finite covers of 3-manifolds. arXiv:1807.09861; 07/2018
  • V. Ertl, K. Yamada. Comparison between rigid syntomic and crystalline syntomic cohomology for strictly semistable log schemes with boundary. arXiv:1805.04974 math.NT; 05/2018.
  • J. Sprang, The algebraic de Rham realization of the elliptic polylogarithm via the Poincaré bundle. arXiv:1802.04996; 02/2018
  • Y. Kezuka, On the p-part of the Birch-Swinnerton-Dyer conjecture for elliptic curves with complex multiplication by the ring of integers of ℚ(√-3). arXiv:1605.08245 math.NT; Math. Proc. Camb. Philos. Soc., 164, pp. 67-98, 1/2018
  • V. Wanner, Comparison of two notions of subharmonicity on non-archimedean curves. arXiv: 1801.04713; 01/2018

2017

  • G. Cortiñas, J. Cuntz, R. Meyer, and G. Tamme, Weak completions, bornologies and rigid cohomology. arXiv:1712.08004 math.AG; 12/2017
  • P. Jell, J. Rau, K. Shaw Lefschetz (1,1)-theorem in tropical geometry. Epijournal de Géometrie Algébrique, volume 2, article no. 11 (2018)arXiv:1711.07900;11/2017
  • F. Binda and A. Krishna, Zero cycles with modulus and zero cycles on singular varieties, to appear in Compositio Math, arXiv:1512.04847v4 [math.AG].
  • G. Cortiñas, J. Cuntz, R. Meyer, and G. Tamme, Nonarchimedean bornologies, cyclic homology and rigid cohomology. arXiv:1708.00357 math.AG; 08/2017
  • F. Hebestreit, M. Land, W. Lück, O. Randal-Williams. A Vanishing theorem for tautological classes of aspherical manifolds. arXiv:1705.06232 math.AT; 05/2017
  • F. Binda, Torsion zero cycles with modulus on affine varieties.arXiv:1604.06294 math.AG, to appear in J. of Pure and App. Algebra.
  • F. Binda, J. Cao, W. Kai and R. Sugiyama, Torsion and divisibility for reciprocity sheaves and 0-cycles with modulus, J. of Algebra, Vol. 469, 1, 2017.

2016

  • N. Otoba; J. Petean, Solutions of the Yamabe equation on harmonic Riemannian submersions, arXiv:1611.06709 math.DG; 11/2016
  • V. Ertl. Full faithfulness for overconvergent F-de Rham-Witt connections. arXiv:1411.7182 math.NT; Comptes rendus - Mathématique vol. 354, no. 7, pp. 653-658, 07/2016.
  • D. Scarponi, Sparsity of p-divisible unramified liftings for subvarieties of abelian varieties with trivial stabilizer. arXiv:1602.08755v3; 02/2016
  • O. Gwilliam, D. Pavlov. Enhancing the filtered derived category. arXiv:1602.01515, accepted by J. Pure Appl. Algebra; 02/2016

2015

  • D. Scarponi, The realization of the degree zero part of the motivic polylogarithm on abelian schemes in Deligne-Beilinson cohomology. arXiv:1512.01997; 12/2015
  • F. Bambozzi, O. Ben-Bassat, K. Kremnizer . Stein Domains in Banach Algebraic Geometry. arxiv:1511.09045 math.AG; 11/2015
  • F. Martin Analytic functions on tubes of non-Archimedean analytic spaces, with an appendix by Christian Kappen arXiv:1510.01178; 10/2015
  • I. Barnea, M. Joachim, S. Mahanta. Model structure on projective systems of C*-algebras and bivariant homology theories. math.KT; 08/2015

2014

Personal Tools
  • Log in

  • Wiki Tools
  • Page
  • Discussion
  • View source
  • History