University of Regensburg
Faculty of Mathematics

HomeAboutPeopleEventsResearchRTGGuest ProgrammeImpressum

From SFB1085 - Higher Invariants
Jump to navigationJump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 7: Line 7:


=== 2025 ===
=== 2025 ===
* [https://webusers.imj-prg.fr/~antoine.sedillot/ A. Sédillot] Topological adelic curves: algebraic coverings, geometry of numbers and heights of closed points. [https://arxiv.org/abs/2503.20156 arXiv:2503.20156]; 03/2025
* M. Ramzi, [https://vova-sosnilo.com/ V. Sosnilo], [https://homepages.uni-regensburg.de/~wic42659/ C. Winges]. Every motive is the motive of a stable ∞-category, [https://arxiv.org/abs/2503.11338 arXiv:2503.11338]; 03/2025
* M. Ramzi, [https://vova-sosnilo.com/ V. Sosnilo], [https://homepages.uni-regensburg.de/~wic42659/ C. Winges]. Every motive is the motive of a stable ∞-category, [https://arxiv.org/abs/2503.11338 arXiv:2503.11338]; 03/2025


Line 23: Line 25:


* N. Naumann, [https://sites.google.com/view/lucapol/home L. Pol], Maxime Ramzi, A symmetric monoidal fracture square. [https://arxiv.org/abs/2411.05467 arXiv:2411.05467];11/2024
* N. Naumann, [https://sites.google.com/view/lucapol/home L. Pol], Maxime Ramzi, A symmetric monoidal fracture square. [https://arxiv.org/abs/2411.05467 arXiv:2411.05467];11/2024
* [https://webusers.imj-prg.fr/~antoine.sedillot/ A. Sédillot] Pseudo-absolute values: foundations. [https://arxiv.org/abs/2411.03905 arXiv:2411.03905]; 11/2024
* U. Bunke, M. Ludewig, Coronas and Callias type operators in coarse geometry [https://arxiv.org/abs/2411.01646 arXiv:2411.01646]; 11/2024


* [https://hoyois.app.ur.de M. Hoyois]. Remarks on the motivic sphere without A^1-invariance, [https://arxiv.org/abs/2410.16757 arxiv:2410.16757]; 10/2024
* [https://hoyois.app.ur.de M. Hoyois]. Remarks on the motivic sphere without A^1-invariance, [https://arxiv.org/abs/2410.16757 arxiv:2410.16757]; 10/2024
Line 46: Line 52:
*Z. Li, [https://sites.google.com/view/ysqin/ Y.Qin]. On p-torsions of geometric Brauer groups, [https://arxiv.org/abs/2406.19518 arXiv:2406.19518]; 06/2024
*Z. Li, [https://sites.google.com/view/ysqin/ Y.Qin]. On p-torsions of geometric Brauer groups, [https://arxiv.org/abs/2406.19518 arXiv:2406.19518]; 06/2024


* [https://kerz.app.uni-regensburg.de/ M. Kerz], G. Tamme. A remark on crystalline cohomology. [https://arxiv.org/abs/2406.19772 arXiv:2406.19772];06/2024
* [https://kerz.app.uni-regensburg.de/ M. Kerz], G. Tamme. A remark on crystalline cohomology. [https://arxiv.org/abs/2406.19772 arXiv:2406.19772]; 06/2024


*F. Hebestreit, M. Land, M. Weiss, [https://homepages.uni-regensburg.de/~wic42659/ C. Winges]. Homology manifolds and euclidean bundles [https://arxiv.org/abs/2406.14677 arXiv:2406.14677]; 06/2024
*F. Hebestreit, M. Land, M. Weiss, [https://homepages.uni-regensburg.de/~wic42659/ C. Winges]. Homology manifolds and euclidean bundles [https://arxiv.org/abs/2406.14677 arXiv:2406.14677]; 06/2024
Line 53: Line 59:


*A. Moroianu, [https://pilca.app.uni-regensburg.de/ M. Pilca]. Conformal product structures on compact Kähler manifolds [https://arxiv.org/abs/2405.08430 arxiv.org/abs/2405.08430]; 05/2024
*A. Moroianu, [https://pilca.app.uni-regensburg.de/ M. Pilca]. Conformal product structures on compact Kähler manifolds [https://arxiv.org/abs/2405.08430 arxiv.org/abs/2405.08430]; 05/2024
*M. Ludewig, Categories of Lagrangian Correspondences in Super Hilbert Spaces and Fermionic Functorial Field Theory; [https://arxiv.org/abs/2212.02956 arXiv:2212.02956]; 03/2024.
*P. Kristel, M. Ludewig, [http://math.konradwaldorf.de/ K. Waldorf], The stringor bundle; [https://arxiv.org/abs/2206.09797 arXiv:2206.09797]; 04/2024.


* [https://sites.google.com/view/ysqin/ Y.Qin]. On the Brauer groups of fibrations. Math. Z. 307, 18 (2024), [https://doi.org/10.1007/s00209-024-03487-8 published version]; 04/2024
* [https://sites.google.com/view/ysqin/ Y.Qin]. On the Brauer groups of fibrations. Math. Z. 307, 18 (2024), [https://doi.org/10.1007/s00209-024-03487-8 published version]; 04/2024
Line 59: Line 69:


*[https://www.math.cit.tum.de/en/algebra/karlsson/ E. Karlsson], [https://www.math.cit.tum.de/en/algebra/scheimbauer/ C. I. Scheimbauer], [https://www.math.cit.tum.de/en/algebra/personen/walde/ T. Walde]. Assembly of constructible factorization algebras, [https://arxiv.org/abs/2403.19472 arXiv:2403.19472]; 03/2024
*[https://www.math.cit.tum.de/en/algebra/karlsson/ E. Karlsson], [https://www.math.cit.tum.de/en/algebra/scheimbauer/ C. I. Scheimbauer], [https://www.math.cit.tum.de/en/algebra/personen/walde/ T. Walde]. Assembly of constructible factorization algebras, [https://arxiv.org/abs/2403.19472 arXiv:2403.19472]; 03/2024
*M. Ludewig, The Clifford Algebra Bundle on Loop Space; [https://arxiv.org/abs/2204.00798 arXiv:2204.00798]; 03/2024.


*T. Annala, [https://hoyois.app.ur.de M. Hoyois], R. Iwasa. Atiyah duality for motivic spectra, [https://arxiv.org/abs/2403.01561 arXiv:2403.01561 math.AG]; 03/2024
*T. Annala, [https://hoyois.app.ur.de M. Hoyois], R. Iwasa. Atiyah duality for motivic spectra, [https://arxiv.org/abs/2403.01561 arXiv:2403.01561 math.AG]; 03/2024
Line 83: Line 95:


*M. Pippi. On some (co)homological invariants of coherent matrix factorizations, J. Noncommut. Geom. (2023), arXiv version: [https://arxiv.org/abs/2011.14740]; 08/2023.
*M. Pippi. On some (co)homological invariants of coherent matrix factorizations, J. Noncommut. Geom. (2023), arXiv version: [https://arxiv.org/abs/2011.14740]; 08/2023.
*P. Kristel, M. Ludewig, [http://math.konradwaldorf.de/ K. Waldorf], A representation of the string 2-group; [https://arxiv.org/abs/2308.05139 arXiv:2308.05139]; 8/2023.
*M. Ludewig, [http://faculty.bicmr.pku.edu.cn/~guochuanthiang/ G. C. Thiang], Quantization of conductance and the coarse cohomology of partitions; [https://arxiv.org/abs/2308.02819 arXiv:2308.02819]; 8/2023.


*[https://homepages.uni-regensburg.de/~glj57400/ J. Glöckle], Initial data sets with dominant energy condition admitting no smooth DEC spacetime extension, [https://arxiv.org/abs/2308.00643 arXiv:2308.00643]; 08/2023
*[https://homepages.uni-regensburg.de/~glj57400/ J. Glöckle], Initial data sets with dominant energy condition admitting no smooth DEC spacetime extension, [https://arxiv.org/abs/2308.00643 arXiv:2308.00643]; 08/2023


*[https://loeh.app.ur.de C. Löh], [https://graptismath.net G. Raptis]. A roadmap to the (vanishing of the) Euler characteristic, [https://arxiv.org/abs/2306.16933 arXiv:2306.16933 math.GT]; the poster version can be found [https://go.ur.de/euler-roadmap here]; 06/2023
*[https://loeh.app.ur.de C. Löh], [https://graptismath.net G. Raptis]. A roadmap to the (vanishing of the) Euler characteristic, [https://arxiv.org/abs/2306.16933 arXiv:2306.16933 math.GT]; the poster version can be found [https://go.ur.de/euler-roadmap here]; 06/2023
* M. Ludewig, The spinor bundle on loop space; [https://arxiv.org/abs/2305.12521 arXiv:2305.12521]; 5/2023.


*[https://loeh.app.ur.de C. Löh]. Exponential growth rates in hyperbolic groups (after Koji Fujiwara and Zlil Sela), Exposée 1206 for the Séminaire Bourbaki (April 2023), [https://arxiv.org/abs/2304.04424 arXiv:2304.04424 math.GR]; 04/2023  
*[https://loeh.app.ur.de C. Löh]. Exponential growth rates in hyperbolic groups (after Koji Fujiwara and Zlil Sela), Exposée 1206 for the Séminaire Bourbaki (April 2023), [https://arxiv.org/abs/2304.04424 arXiv:2304.04424 math.GR]; 04/2023  
Line 138: Line 156:


*[https://loeh.app.ur.de C. Löh], [https://homepages.uni-regensburg.de/~prj05723/ J. Witzig]. Universal finite functorial semi-norms, [https://arxiv.org/abs/2209.12971 arXiv:2209.12971 math.CT]; 09/2022
*[https://loeh.app.ur.de C. Löh], [https://homepages.uni-regensburg.de/~prj05723/ J. Witzig]. Universal finite functorial semi-norms, [https://arxiv.org/abs/2209.12971 arXiv:2209.12971 math.CT]; 09/2022
*P. Kristel, M. Ludewig, [http://math.konradwaldorf.de/ K. Waldorf], 2-vector bundles; [https://arxiv.org/abs/2106.12198 arXiv:2106.12198]; 9/2022.


*L. Martini, [https://homepages.uni-regensburg.de/~wos07573/index.html S. Wolf], Presentable categories internal to an infinity-topos, [https://arxiv.org/abs/2209.05103 arxiv:2209.05103 math.CT]; 09/2022
*L. Martini, [https://homepages.uni-regensburg.de/~wos07573/index.html S. Wolf], Presentable categories internal to an infinity-topos, [https://arxiv.org/abs/2209.05103 arxiv:2209.05103 math.CT]; 09/2022
* U. Bunke, M. Ludewig, Breaking symmetries for equivariant coarse homology theories [https://arxiv.org/abs/2112.11535 arXiv:2112.11535]; 12/2021


*P. Haine, Tim Holzschuh, [https://homepages.uni-regensburg.de/~wos07573/index.html S. Wolf], The fundamental fiber sequence in étale homotopy theory, [https://doi.org/10.1093/imrn/rnad018 International Mathematics Research Notices]
*P. Haine, Tim Holzschuh, [https://homepages.uni-regensburg.de/~wos07573/index.html S. Wolf], The fundamental fiber sequence in étale homotopy theory, [https://doi.org/10.1093/imrn/rnad018 International Mathematics Research Notices]
Line 151: Line 173:
*B. Ammann, [http://www.berndammann.de/publications/diracharm3/ On Triviality of Dirac-harmonic maps], [https://arxiv.org/abs/2209.03074 arXiv:2209.03074]; 09/2022.
*B. Ammann, [http://www.berndammann.de/publications/diracharm3/ On Triviality of Dirac-harmonic maps], [https://arxiv.org/abs/2209.03074 arXiv:2209.03074]; 09/2022.


*[https://friedl.app.uni-regensburg.de/ S. Friedl], T. Kitayama, M. Suzuki, Blanchfield pairings and Gordian distance , [https://arxiv.org/abs/2208.13327 arXiv:2208.13327      math.GT]; 08/2022  
*[https://friedl.app.uni-regensburg.de/ S. Friedl], T. Kitayama, M. Suzuki, Blanchfield pairings and Gordian distance , [https://arxiv.org/abs/2208.13327 arXiv:2208.13327      math.GT]; 08/2022
 
*P. Kristel, M. Ludewig, [http://math.konradwaldorf.de/ K. Waldorf], The insidious bicategory of algebra bundles; [https://arxiv.org/abs/2204.03900 arXiv:2204.03900]; 4/2022.


*S. Linskens, D. Nardin, [https://sites.google.com/view/lucapol/home L. Pol]. Global homotopy theory via partially lax limits. [https://arxiv.org/abs/2206.01556 arXiv:2206.01556]; to appear in Geometry and Topology, 06/2022
*S. Linskens, D. Nardin, [https://sites.google.com/view/lucapol/home L. Pol]. Global homotopy theory via partially lax limits. [https://arxiv.org/abs/2206.01556 arXiv:2206.01556]; to appear in Geometry and Topology, 06/2022
*[https://ithems.riken.jp/en/members/yosuke-kubota Y. Kubota], M. Ludewig, [http://faculty.bicmr.pku.edu.cn/~guochuanthiang/ G. C. Thiang], Delocalized spectra of Landau operators on helical surfaces; [https://arxiv.org/abs/2201.05416 arXiv:2201.05416]; 06/2022.


*[https://loeh.app.ur.de C. Löh]. The spectrum of simplicial volume with fixed fundamental group, [https://arxiv.org/abs/2205.14877 arXiv:2205.14877 math.GT]; 05/2022
*[https://loeh.app.ur.de C. Löh]. The spectrum of simplicial volume with fixed fundamental group, [https://arxiv.org/abs/2205.14877 arXiv:2205.14877 math.GT]; 05/2022
Line 159: Line 185:
*[https://www.uni-regensburg.de/mathematics/mathematics-pippi/startseite/index.html M. Pippi]. On the structure of dg categories of relative singularities, updated version [https://arxiv.org/abs/1911.01332 arXiv:1911.01332v2]; 05/2022
*[https://www.uni-regensburg.de/mathematics/mathematics-pippi/startseite/index.html M. Pippi]. On the structure of dg categories of relative singularities, updated version [https://arxiv.org/abs/1911.01332 arXiv:1911.01332v2]; 05/2022


*[https://hk-nguyen-math.github.io H.K. Nguyen], Taichi Uemura. ∞-type theories, [https://arxiv.org/abs/2205.00798 arXiv:2205.00789]; 05/2022  
*[https://hk-nguyen-math.github.io H.K. Nguyen], Taichi Uemura. ∞-type theories, [https://arxiv.org/abs/2205.00798 arXiv:2205.00789]; 05/2022


*M. Ludewig, [http://faculty.bicmr.pku.edu.cn/~guochuanthiang/ G. C. Thiang], Large-scale geometry obstructs localization; [https://arxiv.org/abs/2204.12895 arXiv:2204.12895]; 5/2022.


*[https://friedl.app.uni-regensburg.de/ S. Friedl], C. Kausik, J. P. Quintanilha. An algorithm to calculate generalized Seifert matrices, [https://arxiv.org/abs/2204.10004 arXiv:2204.10004  math.GT]; 04/2022
*[https://friedl.app.uni-regensburg.de/ S. Friedl], C. Kausik, J. P. Quintanilha. An algorithm to calculate generalized Seifert matrices, [https://arxiv.org/abs/2204.10004 arXiv:2204.10004  math.GT]; 04/2022
Line 166: Line 193:
*[https://friedl.app.uni-regensburg.de/ S. Friedl], [https://homepages.uni-regensburg.de/~mif57716/index.html F. Misev], R. Zentner. Rational homology ribbon cobordism is a partial order, [https://arxiv.org/abs/2204.10730 arXiv:2204.10730  math.GT]; 04/2022
*[https://friedl.app.uni-regensburg.de/ S. Friedl], [https://homepages.uni-regensburg.de/~mif57716/index.html F. Misev], R. Zentner. Rational homology ribbon cobordism is a partial order, [https://arxiv.org/abs/2204.10730 arXiv:2204.10730  math.GT]; 04/2022


*Y. Fang, [https://gubler.app.uni-regensburg.de/ W. Gubler], [http://www.uni-regensburg.de/mathematik/mathematik-kuennemann/index.html K. Künnemann]. On the non-archimedean Monge-Ampère equation in mixed characteristic. [https://arxiv.org/abs/2203.12282 arXiv:2203.12282]; 03/2022
*Y. Fang, [https://gubler.app.uni-regensburg.de/ W. Gubler], [http://www.uni-regensburg.de/mathematik/mathematik-kuennemann/index.html K. Künnemann]. On the non-archimedean Monge-Ampère equation in mixed characteristic. [https://arxiv.org/abs/2203.12282 arXiv:2203.12282]; 03/2022  


*[https://homepages.uni-regensburg.de/~prj05723/ J. Witzig]. Abstract Excision and ℓ¹-Homology, [https://arxiv.org/abs/2203.06120 arXiv:2203.06120 math.AT]; 03/2022
*[https://homepages.uni-regensburg.de/~prj05723/ J. Witzig]. Abstract Excision and ℓ¹-Homology, [https://arxiv.org/abs/2203.06120 arXiv:2203.06120 math.AT]; 03/2022
Line 178: Line 205:
*C. Löh, M. Moraschini, [https://topology.math.kit.edu/21_53.php R. Sauer].  Amenable covers and integral foliated simplicial volume, [https://arxiv.org/abs/2112.12223 arXiv:2112.12223 math.GT]; 12/2021
*C. Löh, M. Moraschini, [https://topology.math.kit.edu/21_53.php R. Sauer].  Amenable covers and integral foliated simplicial volume, [https://arxiv.org/abs/2112.12223 arXiv:2112.12223 math.GT]; 12/2021


*L. Martini, [https://homepages.uni-regensburg.de/~wos07573/index.html S. Wolf], Limits and colimits in internal higher category theory,  [https://arxiv.org/abs/2111.14495 arxiv:2111.14495 math.CT]; 11/2021
*L. Martini, [https://homepages.uni-regensburg.de/~wos07573/index.html S. Wolf], Limits and colimits in internal higher category theory,  [https://arxiv.org/abs/2111.14495 arxiv:2111.14495 math.CT]; 11/2021  


*[https://people.math.ethz.ch/~fournief/ F. Fournier Facio], C. Löh, M. Moraschini. Bounded cohomology and binate groups, [https://arxiv.org/abs/2111.04305 arXiv:2111.04305 math.GR]; 11/2021
*[https://people.math.ethz.ch/~fournief/ F. Fournier Facio], C. Löh, M. Moraschini. Bounded cohomology and binate groups, [https://arxiv.org/abs/2111.04305 arXiv:2111.04305 math.GR]; 11/2021
*M. Ludewig, [http://faculty.bicmr.pku.edu.cn/~guochuanthiang/ G. C. Thiang], Cobordism invariance of topological edge-following states; [https://arxiv.org/abs/2001.08339 arXiv:2001.08339];10/2021.


*[https://sites.google.com/view/rahul-gupta-math/welcome R. Gupta], A. Krishna, J. Rathore, A decomposition theorem for 0-cycles and applications, [https://arxiv.org/abs/2109.10037 arXiv:2109.10037]; 09/2021
*[https://sites.google.com/view/rahul-gupta-math/welcome R. Gupta], A. Krishna, J. Rathore, A decomposition theorem for 0-cycles and applications, [https://arxiv.org/abs/2109.10037 arXiv:2109.10037]; 09/2021
Line 186: Line 215:
*C. Löh, M. Moraschini, [https://www.graptismath.net G. Raptis]. On the simplicial volume and the Euler characteristic of (aspherical) manifolds, [https://arxiv.org/abs/2109.08115 arXiv:2109.08115 math.AT]; 09/2021
*C. Löh, M. Moraschini, [https://www.graptismath.net G. Raptis]. On the simplicial volume and the Euler characteristic of (aspherical) manifolds, [https://arxiv.org/abs/2109.08115 arXiv:2109.08115 math.AT]; 09/2021


*A. A. Khan, C. Ravi. Generalized cohomology theories for algebraic stacks. [https://arxiv.org/abs/2106.15001 arXiv:2106.15001]; 06/2021
* A. A. Khan, C. Ravi. Generalized cohomology theories for algebraic stacks. [https://arxiv.org/abs/2106.15001 arXiv:2106.15001]; 06/2021


*[https://people.math.ethz.ch/~fournief/ F. Fournier Facio], C. Löh, M. Moraschini. Bounded cohomology of finitely generated groups: vanishing, non-vanishing, and computability, [https://arxiv.org/abs/2106.13567 arXiv:2106.13567 math.GR]; 06/2021
*[https://people.math.ethz.ch/~fournief/ F. Fournier Facio], C. Löh, M. Moraschini. Bounded cohomology of finitely generated groups: vanishing, non-vanishing, and computability, [https://arxiv.org/abs/2106.13567 arXiv:2106.13567 math.GR]; 06/2021  


*[https://sites.google.com/view/lucapol/home L. Pol], J. Williamson. Local Gorenstein duality in chromatic group cohomology. [https://arxiv.org/abs/2106.08669 arXiv:2106.08669]; 06/2021
*[https://sites.google.com/view/lucapol/home L. Pol], J. Williamson. Local Gorenstein duality in chromatic group cohomology. [https://arxiv.org/abs/2106.08669 arXiv:2106.08669]; 06/2021
Line 202: Line 231:
*[https://sites.google.com/view/rahul-gupta-math/welcome R. Gupta], A. Krishna, Ramified class field theory and duality over finite fields, [https://arxiv.org/abs/2104.03029 arXiv:2104.03029]; 04/2021
*[https://sites.google.com/view/rahul-gupta-math/welcome R. Gupta], A. Krishna, Ramified class field theory and duality over finite fields, [https://arxiv.org/abs/2104.03029 arXiv:2104.03029]; 04/2021


*[https://graptismath.net/index.html G. Raptis]. Bounded cohomology and homotopy colimits, [https://arxiv.org/abs/2103.15614 arXiv:2103.15614]; 03/2021  
*[https://graptismath.net/index.html G. Raptis]. Bounded cohomology and homotopy colimits, [https://arxiv.org/abs/2103.15614 arXiv:2103.15614]; 03/2021


*B. Ammann, [http://homepages.uni-regensburg.de/~glj57400/ J. Glöckle], Dominant energy condition and spinors on Lorentzian manifolds, [https://arxiv.org/abs/2103.11032 arXiv:2103.11032]; 03/2021.
* B. Ammann, [http://homepages.uni-regensburg.de/~glj57400/ J. Glöckle], Dominant energy condition and spinors on Lorentzian manifolds, [https://arxiv.org/abs/2103.11032 arXiv:2103.11032]; 03/2021.


*[https://kerz.app.uni-regensburg.de/ M. Kerz], S. Saito, G. Tamme. K-theory of non-archimedean rings II. [https://arxiv.org/abs/2103.06711 arXiv:2103.06711]; 03/2021
*[https://kerz.app.uni-regensburg.de/ M. Kerz], S. Saito, G. Tamme. K-theory of non-archimedean rings II. [https://arxiv.org/abs/2103.06711 arXiv:2103.06711]; 03/2021  


*[https://hk-nguyen-math.github.io/ H. K. Nguyen], [https://graptismath.net/index.html G. Raptis], C. Schrade. Higher weak (co)limits, adjoint functor theorems, and higher Brown representability, [https://arxiv.org/abs/2103.06003 arXiv:2103.06003]; 03/2021
*[https://hk-nguyen-math.github.io/ H. K. Nguyen], [https://graptismath.net/index.html G. Raptis], C. Schrade. Higher weak (co)limits, adjoint functor theorems, and higher Brown representability, [https://arxiv.org/abs/2103.06003 arXiv:2103.06003]; 03/2021
Line 230: Line 259:
*[https://homepages.uni-regensburg.de/~wos07573/index.html S. Wolf], The pro-étale topos as a category of pyknotic presheaves, Doc. Math. 27, 2067-2106 (2022) 12/2020
*[https://homepages.uni-regensburg.de/~wos07573/index.html S. Wolf], The pro-étale topos as a category of pyknotic presheaves, Doc. Math. 27, 2067-2106 (2022) 12/2020


*A. Moroianu, [https://pilca.app.uni-regensburg.de/ M. Pilca]. Metric connections with parallel twistor-free torsion [https://arxiv.org/abs/2012.10882 arXiv:2012.10882 math.DG]; 12/2020
* A. Moroianu, [https://pilca.app.uni-regensburg.de/ M. Pilca]. Metric connections with parallel twistor-free torsion [https://arxiv.org/abs/2012.10882 arXiv:2012.10882 math.DG]; 12/2020


* B. Ammann, J. Mougel, V. Nistor. A regularity result for the bound states of N-body Schrödinger operators: Blow-ups and Lie manifolds [https://arxiv.org/abs/2012.13902 arXiv:2012.13902]; 12/2020.
*B. Ammann, J. Mougel, V. Nistor. A regularity result for the bound states of N-body Schrödinger operators: Blow-ups and Lie manifolds [https://arxiv.org/abs/2012.13902 arXiv:2012.13902]; 12/2020.


*J.I. Burgos Gil, [https://sites.google.com/view/souvikgoswami S. Goswami], G. Pearlstein. Height Pairing on Higher Cycles and Mixed Hodge Structures. Proceedings of the London Mathematical Society, 125 (2022), Issue 1, 61-170 [https://doi.org/10.1112/plms.12443].
*J.I. Burgos Gil, [https://sites.google.com/view/souvikgoswami S. Goswami], G. Pearlstein. Height Pairing on Higher Cycles and Mixed Hodge Structures. Proceedings of the London Mathematical Society, 125 (2022), Issue 1, 61-170 [https://doi.org/10.1112/plms.12443].
Line 240: Line 269:
*S.Balchin, J.P.C. Greenlees, [https://sites.google.com/view/lucapol/home L. Pol], J. Williamson. Torsion model for tensor triangulated categories: the one-step case. [https://arxiv.org/abs/2011.10413 arXiv:2011.10413]; 11/2020
*S.Balchin, J.P.C. Greenlees, [https://sites.google.com/view/lucapol/home L. Pol], J. Williamson. Torsion model for tensor triangulated categories: the one-step case. [https://arxiv.org/abs/2011.10413 arXiv:2011.10413]; 11/2020


*[https://sites.google.com/view/lucapol/home L. Pol], J. Williamson. The homotopy theory of complete modules. [https://arxiv.org/abs/2011.06989 arXiv:2011.06989]; 11/2020  
*[https://sites.google.com/view/lucapol/home L. Pol], J. Williamson. The homotopy theory of complete modules. [https://arxiv.org/abs/2011.06989 arXiv:2011.06989]; 11/2020


*S. Boucksom, [https://gubler.app.uni-regensburg.de/ W. Gubler], F. Martin. Non-Archimedean volumes of metrized nef line bundles. [https://arxiv.org/abs/2011.06986 arXiv:2011.06986]; 11/2020  
*S. Boucksom, [https://gubler.app.uni-regensburg.de/ W. Gubler], F. Martin. Non-Archimedean volumes of metrized nef line bundles. [https://arxiv.org/abs/2011.06986 arXiv:2011.06986]; 11/2020  
Line 260: Line 289:
*B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, K. Moi, [http://markus-land.de/ M. Land], [https://homepages.uni-regensburg.de/~nad22969/ D. Nardin], T. Nikolaus, W. Steimle. Hermitian K-theory for stable ∞-categories III: Grothendieck-Witt groups of rings [http://arxiv.org/abs/2009.07225 arXiv:2009.07225]; 09/2020
*B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, K. Moi, [http://markus-land.de/ M. Land], [https://homepages.uni-regensburg.de/~nad22969/ D. Nardin], T. Nikolaus, W. Steimle. Hermitian K-theory for stable ∞-categories III: Grothendieck-Witt groups of rings [http://arxiv.org/abs/2009.07225 arXiv:2009.07225]; 09/2020


*[https://homepages.uni-regensburg.de/~lum63364/ M. Ludewig], G. C. Thiang. Gaplessness of Landau Hamiltonians on hyperbolic half-planes via coarse geometry. [https://arxiv.org/abs/2009.07688 arXiv:2009.07688]; 09/2020. To appear in Comm. Math. Phys.
*[https://homepages.uni-regensburg.de/~lum63364/ M. Ludewig], G. C. Thiang. Gaplessness of Landau Hamiltonians on hyperbolic half-planes via coarse geometry. [https://arxiv.org/abs/2009.07688 arXiv:2009.07688]; 09/2020..


*B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, K. Moi, [http://markus-land.de/ M. Land], [https://homepages.uni-regensburg.de/~nad22969/ D. Nardin], T. Nikolaus, W. Steimle. Hermitian K-theory for stable ∞-categories II: Cobordism categories and additivity [https://arxiv.org/abs/2009.07224 arXiv:2009.07224]; 09/2020
*B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, K. Moi, [http://markus-land.de/ M. Land], [https://homepages.uni-regensburg.de/~nad22969/ D. Nardin], T. Nikolaus, W. Steimle. Hermitian K-theory for stable ∞-categories II: Cobordism categories and additivity [https://arxiv.org/abs/2009.07224 arXiv:2009.07224]; 09/2020
Line 268: Line 297:
*[https://sites.google.com/view/rahul-gupta-math/welcome R. Gupta], Motivic invariants of symmetric powers, [https://arxiv.org/abs/2009.06986, arXiv:2009.06986]; 09/2020
*[https://sites.google.com/view/rahul-gupta-math/welcome R. Gupta], Motivic invariants of symmetric powers, [https://arxiv.org/abs/2009.06986, arXiv:2009.06986]; 09/2020


*[https://hoyois.app.uni-regensburg.de M. Hoyois], Joachim Jelisiejew, [https://homepages.uni-regensburg.de/~nad22969/ D. Nardin], Burt Totaro, [https://www.muramatik.com M. Yakerson]. The Hilbert scheme of infinite affine space and algebraic K-theory. [https://arxiv.org/abs/2002.11439 arXiv:2002.11439]; 09/2020
*[https://hoyois.app.uni-regensburg.de M. Hoyois], Joachim Jelisiejew, [https://homepages.uni-regensburg.de/~nad22969/ D. Nardin], Burt Totaro, [https://www.muramatik.com M. Yakerson]. The Hilbert scheme of infinite affine space and algebraic K-theory. [https://arxiv.org/abs/2002.11439 arXiv:2002.11439]; 09/2020  


*Y. Kezuka, Tamagawa number divisibility of central L-values of twists of the Fermat elliptic curve. [https://arxiv.org/abs/2003.02772 arXiv:2003.02772 math.NT]; 08/2020
*Y. Kezuka, Tamagawa number divisibility of central L-values of twists of the Fermat elliptic curve. [https://arxiv.org/abs/2003.02772 arXiv:2003.02772 math.NT]; 08/2020
Line 280: Line 309:
*[https://friedl.app.uni-regensburg.de/ S. Friedl], T. Kitayama, L. Lewark, M. Nagel and M. Powell. Homotopy ribbon concordance, Blanchfield pairings, and twisted Alexander polynomials. [https://arxiv.org/abs/2007.15289 arXiv:2007.15289]; 08/2020
*[https://friedl.app.uni-regensburg.de/ S. Friedl], T. Kitayama, L. Lewark, M. Nagel and M. Powell. Homotopy ribbon concordance, Blanchfield pairings, and twisted Alexander polynomials. [https://arxiv.org/abs/2007.15289 arXiv:2007.15289]; 08/2020


*G. Herrmann and J. P. Quintanilha. The Complex of Hypersurfaces in a Homology Class. [https://arxiv.org/abs/2007.00522 arXiv:2007.00522]; 07/2020
* G. Herrmann and J. P. Quintanilha. The Complex of Hypersurfaces in a Homology Class. [https://arxiv.org/abs/2007.00522 arXiv:2007.00522]; 07/2020


*[https://homepages.uni-regensburg.de/~lum63364/ M. Ludewig], S. Roos. The Chiral Anomaly of the Free Fermion in Functorial Field Theory. [https://arxiv.org/abs/2010.05892 arXiv:2010.05892]; Ann. Henri Poincare, 21:1191-1233, 06/2020.
*[https://homepages.uni-regensburg.de/~lum63364/ M. Ludewig], S. Roos. The Chiral Anomaly of the Free Fermion in Functorial Field Theory. [https://arxiv.org/abs/2010.05892 arXiv:2010.05892]; Ann. Henri Poincare, 21:1191-1233, 06/2020.
Line 292: Line 321:
*S. Boucksom, [https://gubler.app.uni-regensburg.de/ W. Gubler], F. Martin. Differentiability of relative volumes over an arbitrary non-archimedean field. [https://arxiv.org/abs/2004.03847 arXiv:2004.03847]; 04/2020
*S. Boucksom, [https://gubler.app.uni-regensburg.de/ W. Gubler], F. Martin. Differentiability of relative volumes over an arbitrary non-archimedean field. [https://arxiv.org/abs/2004.03847 arXiv:2004.03847]; 04/2020


*[https://ekvv.uni-bielefeld.de/pers_publ/publ/PersonDetail.jsp?personId=412153703&lang=en A. M. Botero] and J. I. Burgos Gil. Toroidal b-divisors and Monge-Ampére measures. [https://arxiv.org/abs/2004.14045 arXiv.2004.1405]; 04/2020  
*[https://ekvv.uni-bielefeld.de/pers_publ/publ/PersonDetail.jsp?personId=412153703&lang=en A. M. Botero] and J. I. Burgos Gil. Toroidal b-divisors and Monge-Ampére measures. [https://arxiv.org/abs/2004.14045 arXiv.2004.1405]; 04/2020


*A. Moroianu, [https://pilca.app.uni-regensburg.de/ M. Pilca]. Closed 1-Forms and Twisted Cohomology [https://arxiv.org/abs/2003.10368 arXiv:2003.10368 math.DG]; 03/2020
*A. Moroianu, [https://pilca.app.uni-regensburg.de/ M. Pilca]. Closed 1-Forms and Twisted Cohomology [https://arxiv.org/abs/2003.10368 arXiv:2003.10368 math.DG]; 03/2020  


*K. van Woerden. Quantifying Quillen's Uniform Fp-isomorphism Theorem. [https://arxiv.org/abs/1711.10206v2 arXiv:1711.10206v2 math. AT]; 03/2020
*K. van Woerden. Quantifying Quillen's Uniform Fp-isomorphism Theorem. [https://arxiv.org/abs/1711.10206v2 arXiv:1711.10206v2 math. AT]; 03/2020


*[https://drew-heard.github.io/ D. Heard]. The topological nilpotence degree of a Noetherian unstable algebra. [https://arxiv.org/abs/2003.13267 arXiv:2003.13267]; 03/2020
* [https://drew-heard.github.io/ D. Heard]. The topological nilpotence degree of a Noetherian unstable algebra. [https://arxiv.org/abs/2003.13267 arXiv:2003.13267]; 03/2020


*[https://www.fernuni-hagen.de/juniorprofessur-algebra/team/steffen.kionke.shtml S. Kionke], C. Löh. A note on p-adic simplicial volumes, [https://arxiv.org/abs/2003.10756 arXiv:2003.10756 math.GT]; 03/2020
*[https://www.fernuni-hagen.de/juniorprofessur-algebra/team/steffen.kionke.shtml S. Kionke], C. Löh. A note on p-adic simplicial volumes, [https://arxiv.org/abs/2003.10756 arXiv:2003.10756 math.GT]; 03/2020


*[https://www.icmat.es/miembros/burgos/index.html Burgos Gil, José Ignacio]; [https://gubler.app.uni-regensburg.de/ Gubler, Walter]; P. Jell; [http://www.uni-regensburg.de/mathematik/mathematik-kuennemann/index.html Künnemann, Klaus]: A comparison of positivity in complex and tropical toric geometry. [https://arxiv.org/abs/2003.08644 arXiv:2003.08644 math.AG]; 03/2020.
* [https://www.icmat.es/miembros/burgos/index.html Burgos Gil, José Ignacio]; [https://gubler.app.uni-regensburg.de/ Gubler, Walter]; P. Jell; [http://www.uni-regensburg.de/mathematik/mathematik-kuennemann/index.html Künnemann, Klaus]: A comparison of positivity in complex and tropical toric geometry. [https://arxiv.org/abs/2003.08644 arXiv:2003.08644 math.AG]; 03/2020.


*C. Löh. Ergodic theoretic methods in group homology. A minicourse on L2-Betti numbers in group theory. SpringerBriefs in Mathematics, Springer, [https://www.springer.com/gp/book/9783030442194 DOI 10.1007/978-3-030-44220-0] 03/2020.
*C. Löh. Ergodic theoretic methods in group homology. A minicourse on L2-Betti numbers in group theory. SpringerBriefs in Mathematics, Springer, [https://www.springer.com/gp/book/9783030442194 DOI 10.1007/978-3-030-44220-0] 03/2020.
Line 308: Line 337:
*C. Löh, M. Moraschini. Simplicial volume via normalised cycles, [https://arxiv.org/abs/2003.02584 arXiv:2003.02584 math.AT]; 03/2020
*C. Löh, M. Moraschini. Simplicial volume via normalised cycles, [https://arxiv.org/abs/2003.02584 arXiv:2003.02584 math.AT]; 03/2020


* [https://homepages.uni-regensburg.de/~gur23971/ R. Gualdi], [https://cesar-martinez-math.weebly.com C. Martínez], Higher dimensional essential minima and equidistribution of cycles, [https://arxiv.org/abs/2001.11468 arXiv:2001.11468]; 01/2020
*[https://homepages.uni-regensburg.de/~gur23971/ R. Gualdi], [https://cesar-martinez-math.weebly.com C. Martínez], Higher dimensional essential minima and equidistribution of cycles, [https://arxiv.org/abs/2001.11468 arXiv:2001.11468]; 01/2020


*[http://markus-land.de M. Land], [http://www.staff.science.uu.nl/~meier007/ L. Meier], G. Tamme, Vanishing results for chromatic localizations of algebraic K-theory. [https://arxiv.org/abs/2001.10425 arXiv:2001.10425]; 01/2020  
*[http://markus-land.de M. Land], [http://www.staff.science.uu.nl/~meier007/ L. Meier], G. Tamme, Vanishing results for chromatic localizations of algebraic K-theory. [https://arxiv.org/abs/2001.10425 arXiv:2001.10425]; 01/2020


*N. Ginoux, G. Habib, [https://pilca.app.uni-regensburg.de/ M. Pilca], U. Semmelmann. An Obata-type characterization of doubly-warped product Kähler manifolds. [https://arxiv.org/abs/2002.08808 arxiv:2002.08808]; 02/2020
*N. Ginoux, G. Habib, [https://pilca.app.uni-regensburg.de/ M. Pilca], U. Semmelmann. An Obata-type characterization of doubly-warped product Kähler manifolds. [https://arxiv.org/abs/2002.08808 arxiv:2002.08808]; 02/2020
Line 332: Line 361:
*[http://people.dm.unipi.it/frigerio/ R. Frigerio], M. Moraschini. Gromov's theory of multicomplexes with applications to bounded cohomology and simplicial volume, [https://arxiv.org/abs/1808.07307 arXiv:1808.07307 math.GT]; 12/2019; To appear in Memoirs of the American Mathematical Society.
*[http://people.dm.unipi.it/frigerio/ R. Frigerio], M. Moraschini. Gromov's theory of multicomplexes with applications to bounded cohomology and simplicial volume, [https://arxiv.org/abs/1808.07307 arXiv:1808.07307 math.GT]; 12/2019; To appear in Memoirs of the American Mathematical Society.


* [https://ekvv.uni-bielefeld.de/pers_publ/publ/PersonDetail.jsp?personId=412153703&lang=en A. M. Botero], J. I. Burgos Gil and M. Sombra. Convex analysis on polyhedral spaces. [https://arxiv.org/abs/1911.04821 arXiv:1911.04821]; 11/2019  
*[https://ekvv.uni-bielefeld.de/pers_publ/publ/PersonDetail.jsp?personId=412153703&lang=en A. M. Botero], J. I. Burgos Gil and M. Sombra. Convex analysis on polyhedral spaces. [https://arxiv.org/abs/1911.04821 arXiv:1911.04821]; 11/2019  


*Y. Kezuka, Y. Li, A classical family of elliptic curves having rank one and the 2-primary part of their Tate-Shafarevich group non-trivial. [https://arxiv.org/abs/1911.04532 arXiv:1911.04532 math.NT]; 11/2019
*Y. Kezuka, Y. Li, A classical family of elliptic curves having rank one and the 2-primary part of their Tate-Shafarevich group non-trivial. [https://arxiv.org/abs/1911.04532 arXiv:1911.04532 math.NT]; 11/2019
Line 350: Line 379:
*[https://friedl.app.uni-regensburg.de/ S. Friedl], M. Nagel, P. Orson, M. Powell. A survey of the foundations of four-manifold theory in the topological category. [http://arxiv.org/abs/1910.07372 arXiv:1910.07372]; 10/2019
*[https://friedl.app.uni-regensburg.de/ S. Friedl], M. Nagel, P. Orson, M. Powell. A survey of the foundations of four-manifold theory in the topological category. [http://arxiv.org/abs/1910.07372 arXiv:1910.07372]; 10/2019


*D. Fauser, C. Löh, M. Moraschini, J. P. Quintanilha. Stable integral simplicial volume of 3-manifolds, [https://arxiv.org/abs/1910.06120 arXiv:1910.06120 math.GT]; 10/2019  
*D. Fauser, C. Löh, M. Moraschini, J. P. Quintanilha. Stable integral simplicial volume of 3-manifolds, [https://arxiv.org/abs/1910.06120 arXiv:1910.06120 math.GT]; 10/2019


*[https://sites.google.com/view/masoudzargar M.Zargar], Riemannian structures and point-counting, [https://arxiv.org/abs/1910.04003 arXiv:1910.04003]; 10/2019
*[https://sites.google.com/view/masoudzargar M.Zargar], Riemannian structures and point-counting, [https://arxiv.org/abs/1910.04003 arXiv:1910.04003]; 10/2019
Line 362: Line 391:
*V. Wanner, Energy Minimization Principle for non-archimedean curves.  [https://arxiv.org/abs/1909.11335 arXiv:1909.11335]; 09/2019.
*V. Wanner, Energy Minimization Principle for non-archimedean curves.  [https://arxiv.org/abs/1909.11335 arXiv:1909.11335]; 09/2019.


*[https://homepages.uni-regensburg.de/~erv10962/ V. Ertl], [http://www.lemiller.net/ L.E. Miller]. Witt differentials in the h-topology.  [https://arxiv.org/abs/1703.08868 arXiv:1703.08868  math.AC]; Journal of Pure and Applied Algebra, vol. 223, no. 12, 12/2019, pp. 5285-5309.
*[https://homepages.uni-regensburg.de/~erv10962/ V. Ertl], [http://www.lemiller.net/ L.E. Miller]. Witt differentials in the h-topology.  [https://arxiv.org/abs/1703.08868 arXiv:1703.08868  math.AC]; Journal of Pure and Applied Algebra, vol. 223, no. 12, 12/2019, pp. 5285-5309.  


*N.Sardari, [https://sites.google.com/view/masoudzargar M.Zargar], Ramanujan graphs and exponential sums over function fields, [https://arxiv.org/abs/1909.07365 arXiv:1909.07365]; 09/2019
*N.Sardari, [https://sites.google.com/view/masoudzargar M.Zargar], Ramanujan graphs and exponential sums over function fields, [https://arxiv.org/abs/1909.07365 arXiv:1909.07365]; 09/2019


* [https://www.preschema.com A.A. Khan]. Virtual fundamental classes of derived stacks I. [https://arxiv.org/abs/1909.01332 arXiv:1909.01332]; 09/2019
*[https://www.preschema.com A.A. Khan]. Virtual fundamental classes of derived stacks I. [https://arxiv.org/abs/1909.01332 arXiv:1909.01332]; 09/2019


*M. Moraschini, Alessio Savini. A Matsumoto-Mostow result for Zimmer's cocycles of hyperbolic lattices. [https://arxiv.org/pdf/1909.00846.pdf arXiv:1909.00846]; 09/2019 To appear in Transformation Groups.
*M. Moraschini, Alessio Savini. A Matsumoto-Mostow result for Zimmer's cocycles of hyperbolic lattices. [https://arxiv.org/pdf/1909.00846.pdf arXiv:1909.00846]; 09/2019 To appear in Transformation Groups.
Line 374: Line 403:
*M. Lüders, Algebraization for zero-cycles and the p-adic cycle class map, Mathematical Research Letters, [https://www.intlpress.com/site/pub/pages/journals/items/mrl/content/vols/0026/0002/a008/index.php Volume 26] (2019) Number 2, pp. 557-585.
*M. Lüders, Algebraization for zero-cycles and the p-adic cycle class map, Mathematical Research Letters, [https://www.intlpress.com/site/pub/pages/journals/items/mrl/content/vols/0026/0002/a008/index.php Volume 26] (2019) Number 2, pp. 557-585.


*M. Lüders, A restriction isomorphism for zero cyclces with coefficients in Milnor K-theory, Cambridge Journal of Mathematics, [https://www.intlpress.com/site/pub/pages/journals/items/cjm/content/vols/0007/0001/a001/index.php Volume 7] (2019) Number 1-2, pp. 1-31.
* M. Lüders, A restriction isomorphism for zero cyclces with coefficients in Milnor K-theory, Cambridge Journal of Mathematics, [https://www.intlpress.com/site/pub/pages/journals/items/cjm/content/vols/0007/0001/a001/index.php Volume 7] (2019) Number 1-2, pp. 1-31.


*A. Engel, Ch. Wulff, R. Zeidler. Slant products on the Higson-Roe exact sequence, [https://arxiv.org/abs/1909.03777 arXiv:1909.03777 math.KT]; 09/2019
*A. Engel, Ch. Wulff, R. Zeidler. Slant products on the Higson-Roe exact sequence, [https://arxiv.org/abs/1909.03777 arXiv:1909.03777 math.KT]; 09/2019
Line 384: Line 413:
*N.Sardari, [https://sites.google.com/view/masoudzargar M.Zargar], Sections of quadrics over A^1_{F_q}, [https://arxiv.org/abs/1907.07839v2 arXiv:1907.07839]; 08/2019
*N.Sardari, [https://sites.google.com/view/masoudzargar M.Zargar], Sections of quadrics over A^1_{F_q}, [https://arxiv.org/abs/1907.07839v2 arXiv:1907.07839]; 08/2019


*H. Esnault, [https://kerz.app.uni-regensburg.de/ M. Kerz], Etale cohomology of rank one l-adic local systems in positive characteristic, [https://arxiv.org/abs/1908.08291 arxiv:1908.08291]; 08/2019
*H. Esnault, [https://kerz.app.uni-regensburg.de/ M. Kerz], Etale cohomology of rank one l-adic local systems in positive characteristic, [https://arxiv.org/abs/1908.08291 arxiv:1908.08291]; 08/2019  


* H.K.Nguyen, Covariant & Contravariant Homotopy Theories, [https://arxiv.org/abs/1908.06879 arxiv:1908.06879]; 08/2019
*H.K.Nguyen, Covariant & Contravariant Homotopy Theories, [https://arxiv.org/abs/1908.06879 arxiv:1908.06879]; 08/2019


*Y. Kezuka, On the main conjecture of Iwasawa theory for certain non-cyclotomic ℤp-extensions. [https://arxiv.org/abs/1711.07554 arXiv:1711.07554 math.NT]; J. Lond. Math. Soc., Vol. 100, pp. 107-136, 8/2019
*Y. Kezuka, On the main conjecture of Iwasawa theory for certain non-cyclotomic ℤp-extensions. [https://arxiv.org/abs/1711.07554 arXiv:1711.07554 math.NT]; J. Lond. Math. Soc., Vol. 100, pp. 107-136, 8/2019


*Y. Kezuka, J. Choi, Y. Li, Analogues of Iwasawa's μ=0 conjecture and the weak Leopoldt conjecture for a non-cyclotomic ℤ2-extension. [https://arxiv.org/abs/1711.01697 arXiv:1711.01697 math.NT]; Asian J. Math., Vol. 23, No. 3, pp. 383-400, 7/2019  
*Y. Kezuka, J. Choi, Y. Li, Analogues of Iwasawa's μ=0 conjecture and the weak Leopoldt conjecture for a non-cyclotomic ℤ2-extension. [https://arxiv.org/abs/1711.01697 arXiv:1711.01697 math.NT]; Asian J. Math., Vol. 23, No. 3, pp. 383-400, 7/2019


*[https://friedl.app.uni-regensburg.de/ S. Friedl], Mark Powell, Homotopy ribbon concordance and Alexander polynomials. [http://arxiv.org/abs/1907.09031 arXiv:1907.09031]; 07/2019
*[https://friedl.app.uni-regensburg.de/ S. Friedl], Mark Powell, Homotopy ribbon concordance and Alexander polynomials. [http://arxiv.org/abs/1907.09031 arXiv:1907.09031]; 07/2019
Line 400: Line 429:
*[https://sites.google.com/view/lukas-prader/ L. Prader], A local–global principle for surjective polynomial maps, [https://arxiv.org/abs/1909.11690 arXiv:1909.11690]; Journal of Pure and Applied Algebra 223(6), 06/2019, pp. 2371-2381
*[https://sites.google.com/view/lukas-prader/ L. Prader], A local–global principle for surjective polynomial maps, [https://arxiv.org/abs/1909.11690 arXiv:1909.11690]; Journal of Pure and Applied Algebra 223(6), 06/2019, pp. 2371-2381


*F. Madani, A. Moroianu, [https://pilca.app.uni-regensburg.de/ M. Pilca]. LcK structures with holomorphic Lee vector field on Vaisman-type manifolds [https://arxiv.org/abs/1905.07300 arXiv:1905.07300 math.DG]; 05/2019
*F. Madani, A. Moroianu, [https://pilca.app.uni-regensburg.de/ M. Pilca]. LcK structures with holomorphic Lee vector field on Vaisman-type manifolds [https://arxiv.org/abs/1905.07300 arXiv:1905.07300 math.DG]; 05/2019  


*[https://homepages.uni-regensburg.de/~glj57400/ J. Glöckle], On the space of initial values strictly satisfying the dominant energy condition, [https://arxiv.org/abs/1906.00099 arXiv:1906.00099]; 05/2019
*[https://homepages.uni-regensburg.de/~glj57400/ J. Glöckle], On the space of initial values strictly satisfying the dominant energy condition, [https://arxiv.org/abs/1906.00099 arXiv:1906.00099]; 05/2019


*[http://homepages.uni-regensburg.de/~nan25776/ N. Naumann], C. Ravi. Rigidity in equivariant algebraic $K$-theory. [https://arxiv.org/abs/1905.03102 arXiv:1905.03102]; 05/2019  
*[http://homepages.uni-regensburg.de/~nan25776/ N. Naumann], C. Ravi. Rigidity in equivariant algebraic $K$-theory. [https://arxiv.org/abs/1905.03102 arXiv:1905.03102]; 05/2019


*P. Feller, [http://lewark.de/lukas/ L. Lewark]. Balanced algebraic unknotting, linking forms, and surfaces in three- and four-space. [http://arxiv.org/abs/1905.08305 arXiv:1905.08305]; 05/2019
*P. Feller, [http://lewark.de/lukas/ L. Lewark]. Balanced algebraic unknotting, linking forms, and surfaces in three- and four-space. [http://arxiv.org/abs/1905.08305 arXiv:1905.08305]; 05/2019
Line 410: Line 439:
*[https://graptismath.net G. Raptis], W. Steimle, Topological manifold bundles and the A-theory assembly map. [https://arxiv.org/abs/1905.01868 arXiv:1905.01868]; 05/2019
*[https://graptismath.net G. Raptis], W. Steimle, Topological manifold bundles and the A-theory assembly map. [https://arxiv.org/abs/1905.01868 arXiv:1905.01868]; 05/2019


*P. Antonini, A. Buss, A. Engel, T. Siebenand. Strong Novikov conjecture for low degree cohomology and exotic group C*-algebras, [https://arxiv.org/abs/1905.07730 arXiv:1905.07730 math.KT]; 05/2019
* P. Antonini, A. Buss, A. Engel, T. Siebenand. Strong Novikov conjecture for low degree cohomology and exotic group C*-algebras, [https://arxiv.org/abs/1905.07730 arXiv:1905.07730 math.KT]; 05/2019


*J. Schmidt, [https://www.florianstrunk.de F. Strunk]. A Bloch--Ogus Theorem for henselian local rings in mixed characteristic. [https://arxiv.org/abs/1904.02937 arXiv:1904.02937]; 04/2019
*J. Schmidt, [https://www.florianstrunk.de F. Strunk]. A Bloch--Ogus Theorem for henselian local rings in mixed characteristic. [https://arxiv.org/abs/1904.02937 arXiv:1904.02937]; 04/2019
Line 420: Line 449:
*N. Heuer, C. Löh. The spectrum of simplicial volume. [https://arxiv.org/abs/1904.04539 arXiv:1904.04539 math.GT]; 04/2019
*N. Heuer, C. Löh. The spectrum of simplicial volume. [https://arxiv.org/abs/1904.04539 arXiv:1904.04539 math.GT]; 04/2019


*K. Bohlen, J. M. Lescure. A geometric approach to K-homology for Lie manifolds, [https://arxiv.org/abs/1904.04069 arXiv:1904.04069]; 04/2019
*K. Bohlen, J. M. Lescure. A geometric approach to K-homology for Lie manifolds, [https://arxiv.org/abs/1904.04069 arXiv:1904.04069]; 04/2019  


*[https://homepages.uni-regensburg.de/~erv10962/ V. Ertl], [https://www.s.u-tokyo.ac.jp/en/people/shiho_atsushi/ A. Shiho]. On infiniteness of integral overconvergent de Rham-Witt cohomology modulo torsion. [https://arxiv.org/abs/1812.03720 arXiv:1812.03720 math.NT]; 04/2019; to appear in the Tohoku Mathematical Journal.
*[https://homepages.uni-regensburg.de/~erv10962/ V. Ertl], [https://www.s.u-tokyo.ac.jp/en/people/shiho_atsushi/ A. Shiho]. On infiniteness of integral overconvergent de Rham-Witt cohomology modulo torsion. [https://arxiv.org/abs/1812.03720 arXiv:1812.03720 math.NT]; 04/2019; to appear in the Tohoku Mathematical Journal.  


*[https://homepages.uni-regensburg.de/~erv10962/ V. Ertl]. A new proof of a vanishing result due to Berthelot, Esnault, and Rülling.  [https://arxiv.org/abs/1805.06269 arXiv:1805.06269  math.NT]; 04/2019 to appear in the Journal of Number Theory.
*[https://homepages.uni-regensburg.de/~erv10962/ V. Ertl]. A new proof of a vanishing result due to Berthelot, Esnault, and Rülling.  [https://arxiv.org/abs/1805.06269 arXiv:1805.06269  math.NT]; 04/2019 to appear in the Journal of Number Theory.  


*C. Löh. Residually finite categories. [https://arxiv.org/abs/1903.11488 arXiv:1903.11488 math.CT]; 03/2019
*C. Löh. Residually finite categories. [https://arxiv.org/abs/1903.11488 arXiv:1903.11488 math.CT]; 03/2019
Line 430: Line 459:
*A. Engel, C. Löh. Polynomially weighted l^p-completions and group homology. [https://arxiv.org/abs/1903.11486 arXiv:1903.11486 math.GR]; 03/2019
*A. Engel, C. Löh. Polynomially weighted l^p-completions and group homology. [https://arxiv.org/abs/1903.11486 arXiv:1903.11486 math.GR]; 03/2019


*B. Ammann; K. Kröncke, O. Müller. Construction of initial data sets for Lorentzian manifolds with lightlike parallel spinors. Commun. Math. Phys. 387, 77-109 (2021), doi: 10.1007/s00220-021-04172-1, [https://arxiv.org/abs/1903.02064 arXiv:1903.02064 math.DG]; 03/2019  
*B. Ammann; K. Kröncke, O. Müller. Construction of initial data sets for Lorentzian manifolds with lightlike parallel spinors. Commun. Math. Phys. 387, 77-109 (2021), doi: 10.1007/s00220-021-04172-1, [https://arxiv.org/abs/1903.02064 arXiv:1903.02064 math.DG]; 03/2019


*[https://www.math.bgu.ac.il/~brandens/ M. Brandenbursky], M. Marcinkowski. Bounded cohomology of transformation groups. [https://arxiv.org/abs/1902.11067 arXiv:1902.11067 math.GT]; 02/2019.
*[https://www.math.bgu.ac.il/~brandens/ M. Brandenbursky], M. Marcinkowski. Bounded cohomology of transformation groups. [https://arxiv.org/abs/1902.11067 arXiv:1902.11067 math.GT]; 02/2019.
Line 452: Line 481:
*B. Ammann; N. Große; V Nistor, Analysis and boundary value problems on singular domains: an approach via bounded geometry. [https://arxiv.org/abs/1812.09898 arXiv:1812.09898 math.AP]; 12/2018
*B. Ammann; N. Große; V Nistor, Analysis and boundary value problems on singular domains: an approach via bounded geometry. [https://arxiv.org/abs/1812.09898 arXiv:1812.09898 math.AP]; 12/2018


*[https://homepages.uni-regensburg.de/~erv10962/ V. Ertl], [https://homepages.uni-regensburg.de/~spj54141/ J. Sprang]. Integral Comparison of Monsky-Washnitzer and overconvergent de Rham-Witt cohomology.  [https://www.ams.org/journals/bproc/2018-05-07/S2330-1511-2018-00038-0/S2330-1511-2018-00038-0.pdf Proceedings of the AMS, Series B, vol. 5, pp. 64-72]; 11/2018.  
*[https://homepages.uni-regensburg.de/~erv10962/ V. Ertl], [https://homepages.uni-regensburg.de/~spj54141/ J. Sprang]. Integral Comparison of Monsky-Washnitzer and overconvergent de Rham-Witt cohomology.  [https://www.ams.org/journals/bproc/2018-05-07/S2330-1511-2018-00038-0/S2330-1511-2018-00038-0.pdf Proceedings of the AMS, Series B, vol. 5, pp. 64-72]; 11/2018.


*[https://graptismath.net/ G. Raptis], Devissage for Waldhausen K-theory. [https://arxiv.org/abs/1811.09564 arXiv:1811.09564]; 11/2018
*[https://graptismath.net/ G. Raptis], Devissage for Waldhausen K-theory. [https://arxiv.org/abs/1811.09564 arXiv:1811.09564]; 11/2018
Line 462: Line 491:
*[http://federicobambozzi.eu F. Bambozzi], [https://www.math.univ-paris13.fr/~vezzani/ A. Vezzani], Rigidity for rigid analytic motives. [https://arxiv.org/abs/1810.04968 arXiv:1810.04968];10/2018
*[http://federicobambozzi.eu F. Bambozzi], [https://www.math.univ-paris13.fr/~vezzani/ A. Vezzani], Rigidity for rigid analytic motives. [https://arxiv.org/abs/1810.04968 arXiv:1810.04968];10/2018


*[https://drew-heard.github.io/ D. Heard], G. Li, D. Shi, Picard groups and duality for real Morava E-theories. [https://arxiv.org/abs/1810.05439 arxiv:1810.05439]; 10/2018
* [https://drew-heard.github.io/ D. Heard], G. Li, D. Shi, Picard groups and duality for real Morava E-theories. [https://arxiv.org/abs/1810.05439 arxiv:1810.05439]; 10/2018


*B. Ammann; N. Ginoux; Some examples of Dirac-harmonic maps [https://arxiv.org/abs/1809.09859 arXiv:1809.09859 math.AP]; 09/2018
* B. Ammann; N. Ginoux; Some examples of Dirac-harmonic maps [https://arxiv.org/abs/1809.09859 arXiv:1809.09859 math.AP]; 09/2018


*[https://bunke.app.uni-regensburg.de U. Bunke], A. Engel, [http://www.math.uni-bonn.de/people/daniel/ D. Kasprowski],  Ch. Winges, Injectivity results for coarse homology theories. [https://arxiv.org/abs/1809.11079 arXiv:1809.11079 math.KT]; 09/2018
*[https://bunke.app.uni-regensburg.de U. Bunke], A. Engel, [http://www.math.uni-bonn.de/people/daniel/ D. Kasprowski],  Ch. Winges, Injectivity results for coarse homology theories. [https://arxiv.org/abs/1809.11079 arXiv:1809.11079 math.KT]; 09/2018
Line 480: Line 509:
*[http://markus-land.de M. Land], G. Tamme. On the K-theory of pullbacks. [http://arxiv.org/abs/1808.05559 arXiv:1808.05559 math.KT]; 08/2018
*[http://markus-land.de M. Land], G. Tamme. On the K-theory of pullbacks. [http://arxiv.org/abs/1808.05559 arXiv:1808.05559 math.KT]; 08/2018


*[https://kerz.app.uni-regensburg.de/ M. Kerz]. On negative algebraic K-groups. [https://eta.impa.br/dl/137.pdf ICM 2018]; 08/2018
* [https://kerz.app.uni-regensburg.de/ M. Kerz]. On negative algebraic K-groups. [https://eta.impa.br/dl/137.pdf ICM 2018]; 08/2018


*D. Fauser, [https://friedl.app.uni-regensburg.de/ S. Friedl], C. Löh. Integral approximation of simplicial volume of graph manifolds. [https://arxiv.org/abs/1807.10522 arXiv:1807.10522 math.GT]; 07/2018
*D. Fauser, [https://friedl.app.uni-regensburg.de/ S. Friedl], C. Löh. Integral approximation of simplicial volume of graph manifolds. [https://arxiv.org/abs/1807.10522 arXiv:1807.10522 math.GT]; 07/2018
Line 488: Line 517:
*[https://yangenlin.wordpress.com/ E. Yang], Y. Zhao. On the relative twist formula of l-adic sheaves. [https://arxiv.org/abs/1807.06930 arXiv:1807.06930 math.AG]; 07/2018
*[https://yangenlin.wordpress.com/ E. Yang], Y. Zhao. On the relative twist formula of l-adic sheaves. [https://arxiv.org/abs/1807.06930 arXiv:1807.06930 math.AG]; 07/2018


* F. Ben Aribi, [https://friedl.app.uni-regensburg.de/ S. Friedl], [http://www.gerhit.de/ G. Herrmann], The leading coefficient of the L^2-Alexander torsion. [http://arxiv.org/abs/1806.10965 arXiv:1806.10965]; 06/2018
*F. Ben Aribi, [https://friedl.app.uni-regensburg.de/ S. Friedl], [http://www.gerhit.de/ G. Herrmann], The leading coefficient of the L^2-Alexander torsion. [http://arxiv.org/abs/1806.10965 arXiv:1806.10965]; 06/2018


*F. Déglise, F. Jin, [https://www.preschema.com A.A. Khan]. Fundamental classes in motivic homotopy theory. [https://arxiv.org/abs/1805.05920 arXiv:1805.05920]; 05/2018
* F. Déglise, F. Jin, [https://www.preschema.com A.A. Khan]. Fundamental classes in motivic homotopy theory. [https://arxiv.org/abs/1805.05920 arXiv:1805.05920]; 05/2018


*[https://graptismath.net/ G. Raptis], W. Steimle, On the h-cobordism category. I. [https://arxiv.org/abs/1805.04395 arXiv:1805.04395]; 05/2018
*[https://graptismath.net/ G. Raptis], W. Steimle, On the h-cobordism category. I. [https://arxiv.org/abs/1805.04395 arXiv:1805.04395]; 05/2018  


*[https://homepages.uni-regensburg.de/~erv10962/ V. Ertl], K. Yamada. Comparison between rigid syntomic and crystalline syntomic cohomology for strictly semistable log schemes with boundary.  [https://arxiv.org/abs/1805.04974 arXiv:1805.04974  math.NT]; 05/2018.
*[https://homepages.uni-regensburg.de/~erv10962/ V. Ertl], K. Yamada. Comparison between rigid syntomic and crystalline syntomic cohomology for strictly semistable log schemes with boundary.  [https://arxiv.org/abs/1805.04974 arXiv:1805.04974  math.NT]; 05/2018.
Line 502: Line 531:
*[https://kerz.app.uni-regensburg.de/ M. Kerz], Y. Zhao, Higher ideles and class field theory. [https://arxiv.org/abs/1804.00603 arXiv:1804.00603]; 03/2018
*[https://kerz.app.uni-regensburg.de/ M. Kerz], Y. Zhao, Higher ideles and class field theory. [https://arxiv.org/abs/1804.00603 arXiv:1804.00603]; 03/2018


* [https://www.math.u-psud.fr/~fischler/ S. Fischler], [http://homepages.uni-regensburg.de/~spj54141/ J. Sprang], [http://wain.mi.ras.ru/ W. Zudilin], Many odd zeta values are irrational. [https://arxiv.org/abs/1803.08905 arXiv:1803.08905]; 03/2018  
*[https://www.math.u-psud.fr/~fischler/ S. Fischler], [http://homepages.uni-regensburg.de/~spj54141/ J. Sprang], [http://wain.mi.ras.ru/ W. Zudilin], Many odd zeta values are irrational. [https://arxiv.org/abs/1803.08905 arXiv:1803.08905]; 03/2018


*[https://www.uni-regensburg.de/mathematik/mathematik-kings/startseite/index.html G. Kings], D. Scarponi, The Maillot-Rössler current and the polylogarithm on abelian schemes.  [https://arxiv.org/abs/1803.00833 arXiv:1803.00833]; 03/2018
*[https://www.uni-regensburg.de/mathematik/mathematik-kings/startseite/index.html G. Kings], D. Scarponi, The Maillot-Rössler current and the polylogarithm on abelian schemes.  [https://arxiv.org/abs/1803.00833 arXiv:1803.00833]; 03/2018
Line 512: Line 541:
*[http://homepages.uni-regensburg.de/~spj54141/ J. Sprang], Infinitely many odd zeta values are irrational. By elementary means. [https://arxiv.org/abs/1802.09410 arXiv:1802.09410]; 02/2018
*[http://homepages.uni-regensburg.de/~spj54141/ J. Sprang], Infinitely many odd zeta values are irrational. By elementary means. [https://arxiv.org/abs/1802.09410 arXiv:1802.09410]; 02/2018


* [https://kerz.app.uni-regensburg.de/ M. Kerz], S. Saito, G. Tamme, K-theory of non-archimedean rings I. [http://arxiv.org/abs/1802.09819 arXiv1802.09819 math.KT]; 02/2018
*[https://kerz.app.uni-regensburg.de/ M. Kerz], S. Saito, G. Tamme, K-theory of non-archimedean rings I. [http://arxiv.org/abs/1802.09819 arXiv1802.09819 math.KT]; 02/2018


*[https://www.preschema.com A.A. Khan], D. Rydh. Virtual Cartier divisors and blow-ups. [https://arxiv.org/abs/1802.05702 arXiv:1802.05702]; 2/2018
*[https://www.preschema.com A.A. Khan], D. Rydh. Virtual Cartier divisors and blow-ups. [https://arxiv.org/abs/1802.05702 arXiv:1802.05702]; 2/2018
Line 522: Line 551:
*[http://federicobambozzi.eu F. Bambozzi], S. Murro, [http://www.pinamonti.it/ N. Pinamonti] Invariant states on Weyl algebras for the action of the symplectic group. [https://arxiv.org/abs/1802.02487 arXiv:1802.02487];02/2018
*[http://federicobambozzi.eu F. Bambozzi], S. Murro, [http://www.pinamonti.it/ N. Pinamonti] Invariant states on Weyl algebras for the action of the symplectic group. [https://arxiv.org/abs/1802.02487 arXiv:1802.02487];02/2018


*Y. Kezuka, On the p-part of the Birch-Swinnerton-Dyer conjecture for elliptic curves with complex multiplication by the ring of integers of ℚ(√-3). [https://arxiv.org/abs/1605.08245 arXiv:1605.08245 math.NT]; Math. Proc. Camb. Philos. Soc., 164, pp. 67-98, 1/2018  
*Y. Kezuka, On the p-part of the Birch-Swinnerton-Dyer conjecture for elliptic curves with complex multiplication by the ring of integers of ℚ(√-3). [https://arxiv.org/abs/1605.08245 arXiv:1605.08245 math.NT]; Math. Proc. Camb. Philos. Soc., 164, pp. 67-98, 1/2018


*[http://homepages.uni-regensburg.de/~spj54141/ J. Sprang], Real-analytic Eisenstein series via the Poincaré bundle. [https://arxiv.org/abs/1801.05677 arXiv:1801.05677]; 01/2018
*[http://homepages.uni-regensburg.de/~spj54141/ J. Sprang], Real-analytic Eisenstein series via the Poincaré bundle. [https://arxiv.org/abs/1801.05677 arXiv:1801.05677]; 01/2018  


*V. Wanner, Comparison of two notions of subharmonicity on non-archimedean curves. [https://arxiv.org/abs/1801.04713 arXiv: 1801.04713]; 01/2018
*V. Wanner, Comparison of two notions of subharmonicity on non-archimedean curves. [https://arxiv.org/abs/1801.04713 arXiv: 1801.04713]; 01/2018
Line 540: Line 569:
*A. Engel, [http://www.uni-math.gwdg.de/cwulff/ Ch. Wulff] Coronas for properly combable spaces. [https://arxiv.org/abs/1711.06836 arXiv:1711.06836 math.MG]; 11/2017
*A. Engel, [http://www.uni-math.gwdg.de/cwulff/ Ch. Wulff] Coronas for properly combable spaces. [https://arxiv.org/abs/1711.06836 arXiv:1711.06836 math.MG]; 11/2017


*[http://markus-land.de/ M. Land], Reducibility of low dimensional Poincaré duality spaces. [https://arxiv.org/pdf/1711.08179.pdf arXiv:1711.08179]; 11/2017
* [http://markus-land.de/ M. Land], Reducibility of low dimensional Poincaré duality spaces. [https://arxiv.org/pdf/1711.08179.pdf arXiv:1711.08179]; 11/2017


* T. Barthel, T. Schlank, N. Stapleton, Chromatic homotopy theory is asymptotically algebraic. [https://arxiv.org/abs/1711.00844 arXiv:1711.00844]; 11/2017
*T. Barthel, T. Schlank, N. Stapleton, Chromatic homotopy theory is asymptotically algebraic. [https://arxiv.org/abs/1711.00844 arXiv:1711.00844]; 11/2017


* P. Jell, [https://www.math.uni-tuebingen.de/user/jora/ J. Rau], K. Shaw Lefschetz (1,1)-theorem in tropical geometry. Epijournal de Géometrie Algébrique, volume 2, article no. 11 (2018)[https://arxiv.org/abs/1711.07900 arXiv:1711.07900];11/2017
*P. Jell, [https://www.math.uni-tuebingen.de/user/jora/ J. Rau], K. Shaw Lefschetz (1,1)-theorem in tropical geometry. Epijournal de Géometrie Algébrique, volume 2, article no. 11 (2018)[https://arxiv.org/abs/1711.07900 arXiv:1711.07900];11/2017


*E. Elmanto, [https://hoyois.app.uni-regensburg.de M. Hoyois], [https://www.preschema.com A.A. Khan], V. Sosnilo, M. Yakerson. Motivic infinite loop spaces.[https://arxiv.org/abs/1711.05248 arXiv:1711.05248]; 11/2017
*E. Elmanto, [https://hoyois.app.uni-regensburg.de M. Hoyois], [https://www.preschema.com A.A. Khan], V. Sosnilo, M. Yakerson. Motivic infinite loop spaces.[https://arxiv.org/abs/1711.05248 arXiv:1711.05248]; 11/2017


*[http://federicobambozzi.eu F. Bambozzi], O.Ben-Bassat, [https://www.maths.ox.ac.uk/people/yakov.kremnitzer K. Kremnizer] Analytic geometry over F_1 and the Fargues-Fontaine curve. [https://arxiv.org/abs/1711.04885 arXiv:1711.04885];11/2017
*[http://federicobambozzi.eu F. Bambozzi], O.Ben-Bassat, [https://www.maths.ox.ac.uk/people/yakov.kremnitzer K. Kremnizer] Analytic geometry over F_1 and the Fargues-Fontaine curve. [https://arxiv.org/abs/1711.04885 arXiv:1711.04885];11/2017  


*R. Zentner, [http://wwwf.imperial.ac.uk/~ssivek/ S. Sivek], SU(2)-cyclic surgeries and the pillowcase. [http://arxiv.org/abs/1710.01957 arXiv:1710.01957 math.gt];10/2017
*R. Zentner, [http://wwwf.imperial.ac.uk/~ssivek/ S. Sivek], SU(2)-cyclic surgeries and the pillowcase. [http://arxiv.org/abs/1710.01957 arXiv:1710.01957 math.gt];10/2017
Line 560: Line 589:
*F. Binda and A. Krishna, Zero cycles with modulus and zero cycles on singular varieties, to appear in Compositio Math, [https://arxiv.org/abs/1512.04847 arXiv:1512.04847v4 [math.AG]].
*F. Binda and A. Krishna, Zero cycles with modulus and zero cycles on singular varieties, to appear in Compositio Math, [https://arxiv.org/abs/1512.04847 arXiv:1512.04847v4 [math.AG]].


* M. Boileau, [https://friedl.app.uni-regensburg.de/ S. Friedl], Grothendieck rigidity of 3-manifold groups. [http://arxiv.org/abs/1710.02746 arXiv:1710.02746  math.gt];10/2017
*M. Boileau, [https://friedl.app.uni-regensburg.de/ S. Friedl], Grothendieck rigidity of 3-manifold groups. [http://arxiv.org/abs/1710.02746 arXiv:1710.02746  math.gt];10/2017


*T. Barthel, M. Hausmann, [http://homepages.uni-regensburg.de/~nan25776/ N. Naumann], T. Nikolaus, [http://www.nullplug.org/ J. Noel], N. Stapleton, The Balmer spectrum of the equivariant homotopy category of a finite abelian group, [https://arxiv.org/abs/1709.04828 arXiv:1709.04828 math.at]; 10/2017
*T. Barthel, M. Hausmann, [http://homepages.uni-regensburg.de/~nan25776/ N. Naumann], T. Nikolaus, [http://www.nullplug.org/ J. Noel], N. Stapleton, The Balmer spectrum of the equivariant homotopy category of a finite abelian group, [https://arxiv.org/abs/1709.04828 arXiv:1709.04828 math.at]; 10/2017
Line 566: Line 595:
*M. Boileau, [https://friedl.app.uni-regensburg.de/ S. Friedl], The virtual Thurston seminorm of 3-manifolds. [http://arxiv.org/abs/1709.06485 arXiv:1709.06485  math.gt];09/2017
*M. Boileau, [https://friedl.app.uni-regensburg.de/ S. Friedl], The virtual Thurston seminorm of 3-manifolds. [http://arxiv.org/abs/1709.06485 arXiv:1709.06485  math.gt];09/2017


*A. Conway, [https://friedl.app.uni-regensburg.de/ S. Friedl], [http://www.gerhit.de/ G. Herrmann], Linking forms revisited. [http://arxiv.org/abs/1708.03754 arXiv:1708.03754  math.gt];08/2017
* A. Conway, [https://friedl.app.uni-regensburg.de/ S. Friedl], [http://www.gerhit.de/ G. Herrmann], Linking forms revisited. [http://arxiv.org/abs/1708.03754 arXiv:1708.03754  math.gt];08/2017


*G. Cortiñas, J. Cuntz, R. Meyer, and G. Tamme, Nonarchimedean bornologies, cyclic homology and rigid cohomology.  [http://arxiv.org/abs/1708.00357 arXiv:1708.00357 math.AG]; 08/2017
*G. Cortiñas, J. Cuntz, R. Meyer, and G. Tamme, Nonarchimedean bornologies, cyclic homology and rigid cohomology.  [http://arxiv.org/abs/1708.00357 arXiv:1708.00357 math.AG]; 08/2017
Line 596: Line 625:
*C. Löh. Explicit l1-efficient cycles and amenable normal subgroups. [http://arxiv.org/abs/arXiv:1704.05345 arXiv:1704.05345 math.GT]; 04/2017
*C. Löh. Explicit l1-efficient cycles and amenable normal subgroups. [http://arxiv.org/abs/arXiv:1704.05345 arXiv:1704.05345 math.GT]; 04/2017


*C. Löh. Rank gradient vs. stable integral simplicial volume. [http://arxiv.org/abs/arXiv:1704.05222 arXiv:1704.05222 math.GT]; 04/2017
*C. Löh. Rank gradient vs. stable integral simplicial volume. [http://arxiv.org/abs/arXiv:1704.05222 arXiv:1704.05222 math.GT]; 04/2017  


*S.P. Reeh, T.M. Schlank, N. Stapleton, A formula for p-completion by way of the Segal conjecture. [https://arxiv.org/abs/arxiv:1704.00271 arxiv:1704.00271 math.AT]; 04/2017
*S.P. Reeh, T.M. Schlank, N. Stapleton, A formula for p-completion by way of the Segal conjecture. [https://arxiv.org/abs/arxiv:1704.00271 arxiv:1704.00271 math.AT]; 04/2017
Line 610: Line 639:
*D. Fauser, C. Löh. Variations on the theme of the uniform boundary condition. [http://arxiv.org/abs/arXiv:1703.01108 arXiv:1703.01108 math.GT]; 03/2017
*D. Fauser, C. Löh. Variations on the theme of the uniform boundary condition. [http://arxiv.org/abs/arXiv:1703.01108 arXiv:1703.01108 math.GT]; 03/2017


*A. Engel, Banach strong Novikov conjecture for polynomially contractible groups. [https://arxiv.org/abs/1702.02269 arXiv:1702.02269 math.KT]; 02/2017
*A. Engel, Banach strong Novikov conjecture for polynomially contractible groups. [https://arxiv.org/abs/1702.02269 arXiv:1702.02269 math.KT]; 02/2017  


*[https://www.math.bgu.ac.il/~brandens M.Brandenbursky], M.Marcinkowski.  Aut-invariant norms and Aut-invariant quasimorphisms on free and surface groups. [https://arxiv.org/abs/1702.01662 arXiv:1702.01662 math.GT]; 02/2017
*[https://www.math.bgu.ac.il/~brandens M.Brandenbursky], M.Marcinkowski.  Aut-invariant norms and Aut-invariant quasimorphisms on free and surface groups. [https://arxiv.org/abs/1702.01662 arXiv:1702.01662 math.GT]; 02/2017
Line 616: Line 645:
*N. Umezaki, [https://yangenlin.wordpress.com/ E. Yang], Y. Zhao. Characteristic class and the ε-factor of an étale sheaf. [https://arxiv.org/abs/1701.02841 arXiv:1701.02841 math.AG]; 01/2017
*N. Umezaki, [https://yangenlin.wordpress.com/ E. Yang], Y. Zhao. Characteristic class and the ε-factor of an étale sheaf. [https://arxiv.org/abs/1701.02841 arXiv:1701.02841 math.AG]; 01/2017


===2016 ===
===2016===


*M. Lüders, On a base change conjecture for higher zero-cycles. [https://arxiv.org/abs/1612.04635 arXiv:1612.04635 math.AG]; 12/2016
*M. Lüders, On a base change conjecture for higher zero-cycles. [https://arxiv.org/abs/1612.04635 arXiv:1612.04635 math.AG]; 12/2016
Line 636: Line 665:
*[https://friedl.app.uni-regensburg.de/ S. Friedl]; W. Lueck, S. Tillmann, Groups and polytopes [http://arxiv.org/abs/1611.01857 arXiv:1611.01857 math.GT]; 11/2016
*[https://friedl.app.uni-regensburg.de/ S. Friedl]; W. Lueck, S. Tillmann, Groups and polytopes [http://arxiv.org/abs/1611.01857 arXiv:1611.01857 math.GT]; 11/2016


*B. Ammann; N. Große; V Nistor, Well-posedness of the Laplacian on manifolds with boundary and bounded geometry [http://arxiv.org/abs/1611.00281 arXiv:1611.00281 math.AP]; 11/2016  
*B. Ammann; N. Große; V Nistor, Well-posedness of the Laplacian on manifolds with boundary and bounded geometry [http://arxiv.org/abs/1611.00281 arXiv:1611.00281 math.AP]; 11/2016


*A. Engel, M. Marcinkowski, Burghelea conjecture and asymptotic dimension of groups, [https://arxiv.org/abs/1610.10076 arXiv:1610.10076 math.GT]; 11/2016.
*A. Engel, M. Marcinkowski, Burghelea conjecture and asymptotic dimension of groups, [https://arxiv.org/abs/1610.10076 arXiv:1610.10076 math.GT]; 11/2016.
Line 648: Line 677:
*O. Müller, Applying the index theorem to non-smooth operators, [https://arxiv.org/abs/1506.04636 arXiv:1506.04636 math.AP]; 10/2016
*O. Müller, Applying the index theorem to non-smooth operators, [https://arxiv.org/abs/1506.04636 arXiv:1506.04636 math.AP]; 10/2016


*[https://friedl.app.uni-regensburg.de/ S. Friedl]; W. Lueck. L2-Euler characteristics and the Thurston norm [http://arxiv.org/abs/1609.07805 arXiv:1609.07805 math.GT]; 09/2016  
*[https://friedl.app.uni-regensburg.de/ S. Friedl]; W. Lueck. L2-Euler characteristics and the Thurston norm [http://arxiv.org/abs/1609.07805 arXiv:1609.07805 math.GT]; 09/2016


*[https://friedl.app.uni-regensburg.de/ S. Friedl]; W. Lueck. Universal L2-torsion, polytopes and applications to 3-manifolds. [http://arxiv.org/abs/1609.07809 arXiv:1609.07809 math.GT]; 09/2016
*[https://friedl.app.uni-regensburg.de/ S. Friedl]; W. Lueck. Universal L2-torsion, polytopes and applications to 3-manifolds. [http://arxiv.org/abs/1609.07809 arXiv:1609.07809 math.GT]; 09/2016


*A. Conway; [https://friedl.app.uni-regensburg.de/ S. Friedl]; E. Toffoli, The Blanchfield pairing of colored links. [http://arxiv.org/abs/1609.08057 arXiv:1609.08057 math.GT]; 09/2016  
*A. Conway; [https://friedl.app.uni-regensburg.de/ S. Friedl]; E. Toffoli, The Blanchfield pairing of colored links. [http://arxiv.org/abs/1609.08057 arXiv:1609.08057 math.GT]; 09/2016


*[https://www.icmat.es/miembros/burgos/index.html Burgos Gil, José Ignacio]; [https://gubler.app.uni-regensburg.de/ Gubler, Walter]; Jell, Philipp; [http://www.uni-regensburg.de/mathematik/mathematik-kuennemann/index.html Künnemann, Klaus]; Martin, Florent, Differentiability of non-archimedean volumes and non-archimedean Monge-Ampère equations (with an appendix by Robert Lazarsfeld). Algebraic Geometry 7 (2) (2020) 113-152 [http://content.algebraicgeometry.nl/2020-2/2020-2-005.pdf doi:10.14231/AG-2020-005] [https://arxiv.org/abs/1608.01919 arXiv:1608.01919 math.AG]; 08/2016.
*[https://www.icmat.es/miembros/burgos/index.html Burgos Gil, José Ignacio]; [https://gubler.app.uni-regensburg.de/ Gubler, Walter]; Jell, Philipp; [http://www.uni-regensburg.de/mathematik/mathematik-kuennemann/index.html Künnemann, Klaus]; Martin, Florent, Differentiability of non-archimedean volumes and non-archimedean Monge-Ampère equations (with an appendix by Robert Lazarsfeld). Algebraic Geometry 7 (2) (2020) 113-152 [http://content.algebraicgeometry.nl/2020-2/2020-2-005.pdf doi:10.14231/AG-2020-005] [https://arxiv.org/abs/1608.01919 arXiv:1608.01919 math.AG]; 08/2016.
Line 674: Line 703:
*D. Fauser, C. Löh, Exotic finite functorial semi-norms on singular homology. [http://arxiv.org/abs/arXiv:1605.04093 arXiv:1605.04093 math.GT]; 05/2016
*D. Fauser, C. Löh, Exotic finite functorial semi-norms on singular homology. [http://arxiv.org/abs/arXiv:1605.04093 arXiv:1605.04093 math.GT]; 05/2016


* [https://math.uoregon.edu/profile/botvinn B. Botvinnik], O. Müller, Cheeger-Gromov convergence in a conformal setting, [https://arxiv.org/abs/1512.07651 arXiv:1512.07651 math.DG]; 04/2016
*[https://math.uoregon.edu/profile/botvinn B. Botvinnik], O. Müller, Cheeger-Gromov convergence in a conformal setting, [https://arxiv.org/abs/1512.07651 arXiv:1512.07651 math.DG]; 04/2016


*[http://www.gerrit-herrmann.de/#top G. Herrmann], The $L^2$-Alexander torsion for Seifert fiber spaces. [http://arxiv.org/pdf/arXiv:1602.08768.pdf arXiv:1602.08768 math.GT]; 02/2016
* [http://www.gerrit-herrmann.de/#top G. Herrmann], The $L^2$-Alexander torsion for Seifert fiber spaces. [http://arxiv.org/pdf/arXiv:1602.08768.pdf arXiv:1602.08768 math.GT]; 02/2016


*[https://friedl.app.uni-regensburg.de/ S. Friedl], S. Vidussi. Rank gradients of infinite cyclic covers of Kaehler manifolds. [http://arxiv.org/pdf/arXiv:1604.08267.pdf arXiv:1604.08267 math.GT]; 04/2016
*[https://friedl.app.uni-regensburg.de/ S. Friedl], S. Vidussi. Rank gradients of infinite cyclic covers of Kaehler manifolds. [http://arxiv.org/pdf/arXiv:1604.08267.pdf arXiv:1604.08267 math.GT]; 04/2016
Line 682: Line 711:
*J. Lind, C. Malkiewich.  The transfer map of free loop spaces [http://arxiv.org/abs/1604.03067 arXiv:1604.03067 math.AT]; 04/2016
*J. Lind, C. Malkiewich.  The transfer map of free loop spaces [http://arxiv.org/abs/1604.03067 arXiv:1604.03067 math.AT]; 04/2016


* P. Graf. Polylogarithms for $GL_2$ over totally real fields. [http://arxiv.org/pdf/1604.04209.pdf arXiv:1604.04209 math.NT]; 04/2016
*P. Graf. Polylogarithms for $GL_2$ over totally real fields. [http://arxiv.org/pdf/1604.04209.pdf arXiv:1604.04209 math.NT]; 04/2016  


*[https://friedl.app.uni-regensburg.de/ S. Friedl], T. Kitayama, M. Nagel. Representation varieties detect essential surfaces. [http://arxiv.org/pdf/arXiv:1604.00584.pdf arXiv:1604.00584 math.GT]; 04/2016
*[https://friedl.app.uni-regensburg.de/ S. Friedl], T. Kitayama, M. Nagel. Representation varieties detect essential surfaces. [http://arxiv.org/pdf/arXiv:1604.00584.pdf arXiv:1604.00584 math.GT]; 04/2016
Line 696: Line 725:
*[https://friedl.app.uni-regensburg.de/ S. Friedl],[http://math.wisc.edu/~maxim L. Maxim]. Twisted Novikov homology of complex hypersurface complements. [http://arxiv.org/pdf/arXiv:1602.04943.pdf arXiv:1602.04943 math.AT]; 02/2016
*[https://friedl.app.uni-regensburg.de/ S. Friedl],[http://math.wisc.edu/~maxim L. Maxim]. Twisted Novikov homology of complex hypersurface complements. [http://arxiv.org/pdf/arXiv:1602.04943.pdf arXiv:1602.04943 math.AT]; 02/2016


* [http://federicobambozzi.eu F. Bambozzi]. Theorems A and B for dagger quasi-Stein spaces. [http://arxiv.org/pdf/1602.04388.pdf arXiv:1602.04388 math.AG]; 02/2016
*[http://federicobambozzi.eu F. Bambozzi]. Theorems A and B for dagger quasi-Stein spaces. [http://arxiv.org/pdf/1602.04388.pdf arXiv:1602.04388 math.AG]; 02/2016


*T. Fiore and M. Pieper. Waldhausen Additivity: Classical and Quasicategorical. [http://arxiv.org/abs/1207.6613 arXiv:1207.6613v2 math.AT]; 02/2016
*T. Fiore and M. Pieper. Waldhausen Additivity: Classical and Quasicategorical. [http://arxiv.org/abs/1207.6613 arXiv:1207.6613v2 math.AT]; 02/2016
Line 708: Line 737:
*O. Raventós. Transfinite Adams representability. [http://arxiv.org/abs/1304.3599 arXiv:1304.3599]; new version 02/2016
*O. Raventós. Transfinite Adams representability. [http://arxiv.org/abs/1304.3599 arXiv:1304.3599]; new version 02/2016


* [https://kerz.app.uni-regensburg.de/ M. Kerz], [https://www.florianstrunk.de/ F. Strunk]. On the vanishing of negative homotopy K-theory [http://arxiv.org/abs/1601.08075 arXiv:1601.08075 math.AG]; 01/2016
*[https://kerz.app.uni-regensburg.de/ M. Kerz], [https://www.florianstrunk.de/ F. Strunk]. On the vanishing of negative homotopy K-theory [http://arxiv.org/abs/1601.08075 arXiv:1601.08075 math.AG]; 01/2016


*J. Lind, H. Sati, [http://math.umn.edu/~cwesterl/ C. Westerland].  A higher categorical analogue of topological T-duality for sphere bundles [http://arxiv.org/abs/1601.06285 arXiv:1601.06285 math.AT]; 01/2016
*J. Lind, H. Sati, [http://math.umn.edu/~cwesterl/ C. Westerland].  A higher categorical analogue of topological T-duality for sphere bundles [http://arxiv.org/abs/1601.06285 arXiv:1601.06285 math.AT]; 01/2016
Line 720: Line 749:
*[http://www.math.ens.fr/~amini/ O. Amini], [http://www.math.uchicago.edu/~bloch/ S. Bloch], [http://www.icmat.es/miembros/burgos/ J. I. Burgos Gil], J. Fresán. Feynman Amplitudes and Limits of Heights [http://arxiv.org/pdf/1512.04862.pdf arXiv:1512.04862 math.AG]; 12/2015
*[http://www.math.ens.fr/~amini/ O. Amini], [http://www.math.uchicago.edu/~bloch/ S. Bloch], [http://www.icmat.es/miembros/burgos/ J. I. Burgos Gil], J. Fresán. Feynman Amplitudes and Limits of Heights [http://arxiv.org/pdf/1512.04862.pdf arXiv:1512.04862 math.AG]; 12/2015


*P. Jell, K. Shaw, J. Smacka. Superforms, Tropical Cohomology and Poincaré Duality [https://doi.org/10.1515/advgeom-2018-0006 doi:10.1515/advgeom-2018-0006] [http://arxiv.org/pdf/1512.07409v1.pdf arXiv:1512.07409 math.AG]; 12/2015
* P. Jell, K. Shaw, J. Smacka. Superforms, Tropical Cohomology and Poincaré Duality [https://doi.org/10.1515/advgeom-2018-0006 doi:10.1515/advgeom-2018-0006] [http://arxiv.org/pdf/1512.07409v1.pdf arXiv:1512.07409 math.AG]; 12/2015


*[https://friedl.app.uni-regensburg.de/ S. Friedl], C. Livingston, R. Zentner. Knot concordances and alternating knots. [http://arxiv.org/pdf/arXiv:1512.08414.pdf arXiv:1512.08414 math.GT]; 12/2015
*[https://friedl.app.uni-regensburg.de/ S. Friedl], C. Livingston, R. Zentner. Knot concordances and alternating knots. [http://arxiv.org/pdf/arXiv:1512.08414.pdf arXiv:1512.08414 math.GT]; 12/2015
Line 736: Line 765:
*Y. Wu. On the p-adic local invariant cycle theorem. [http://arxiv.org/pdf/1511.08323.pdf arxiv:1511.08323 math.AG]; 11/2015
*Y. Wu. On the p-adic local invariant cycle theorem. [http://arxiv.org/pdf/1511.08323.pdf arxiv:1511.08323 math.AG]; 11/2015


*J. Scholbach, [https://dmitripavlov.org/ D. Pavlov].  Homotopy theory of symmetric powers.  [https://arxiv.org/abs/1510.04969 arXiv:1510.04969]; 10/2015
*J. Scholbach, [https://dmitripavlov.org/ D. Pavlov].  Homotopy theory of symmetric powers.  [https://arxiv.org/abs/1510.04969 arXiv:1510.04969]; 10/2015  


*F. Martin; Analytic functions on tubes of non-Archimedean analytic spaces, with an appendix by Christian Kappen [http://arxiv.org/abs/1510.01178 arXiv:1510.01178]; 10/2015
*F. Martin; Analytic functions on tubes of non-Archimedean analytic spaces, with an appendix by Christian Kappen [http://arxiv.org/abs/1510.01178 arXiv:1510.01178]; 10/2015  


*[https://www.uni-regensburg.de/mathematik/mathematik-kings/startseite/index.html G. Kings]. On p-adic interpolation of motivic Eisenstein classes. [http://arxiv.org/pdf/1510.01466.pdf arxiv:1505.01466 math.NT]; 10/2015
*[https://www.uni-regensburg.de/mathematik/mathematik-kings/startseite/index.html G. Kings]. On p-adic interpolation of motivic Eisenstein classes. [http://arxiv.org/pdf/1510.01466.pdf arxiv:1505.01466 math.NT]; 10/2015
Line 746: Line 775:
*O. Müller, N. Nowaczyk, A universal spinor bundle and the Einstein-Dirac-Maxwell equation as a variational theory, [https://arxiv.org/abs/1504.01034 arXiv:1504.01034 math.DG]; 10/2015
*O. Müller, N. Nowaczyk, A universal spinor bundle and the Einstein-Dirac-Maxwell equation as a variational theory, [https://arxiv.org/abs/1504.01034 arXiv:1504.01034 math.DG]; 10/2015


*[https://gubler.app.uni-regensburg.de/ W. Gubler], [http://www.uni-regensburg.de/mathematics/mathematics-kuennemann/ K. Künnemann]. Positivity properties of metrics and delta-forms. [http://arxiv.org/abs/1509.09079 arXiv:150909079 math.AG]; 09/2015  
*[https://gubler.app.uni-regensburg.de/ W. Gubler], [http://www.uni-regensburg.de/mathematics/mathematics-kuennemann/ K. Künnemann]. Positivity properties of metrics and delta-forms. [http://arxiv.org/abs/1509.09079 arXiv:150909079 math.AG]; 09/2015


*[https://bunke.app.uni-regensburg.de U. Bunke], T. Nikolaus, G. Tamme. The Beilinson regulator is a map of ring spectra [http://arxiv.org/abs/1509.05667 arXiv:1509.05667 math.AG]; 09/2015
*[https://bunke.app.uni-regensburg.de U. Bunke], T. Nikolaus, G. Tamme. The Beilinson regulator is a map of ring spectra [http://arxiv.org/abs/1509.05667 arXiv:1509.05667 math.AG]; 09/2015
Line 754: Line 783:
*P. Feller, S. Pohlmann, R. Zentner, Alternating numbers of torus knots with small braid index, [http://arxiv.org/abs/1508.05825 arXiv:1508.05825]; 08/2015
*P. Feller, S. Pohlmann, R. Zentner, Alternating numbers of torus knots with small braid index, [http://arxiv.org/abs/1508.05825 arXiv:1508.05825]; 08/2015


*I. Barnea, [http://wwwmath.uni-muenster.de/u/joachim/ M. Joachim], S. Mahanta. Model structure on projective systems of C*-algebras and bivariant homology theories. [http://arxiv.org/abs/1508.04283 math.KT]; 08/2015
* I. Barnea, [http://wwwmath.uni-muenster.de/u/joachim/ M. Joachim], S. Mahanta. Model structure on projective systems of C*-algebras and bivariant homology theories. [http://arxiv.org/abs/1508.04283 math.KT]; 08/2015


*C. Löh, C. Pagliantini, S. Waeber. Cubical simplicial volume of 3-manifolds. [http://arxiv.org/abs/1508.03017 arXiv:1508.03017 math.GT]; 08/2015
*C. Löh, C. Pagliantini, S. Waeber. Cubical simplicial volume of 3-manifolds. [http://arxiv.org/abs/1508.03017 arXiv:1508.03017 math.GT]; 08/2015


*B. Ammann, F. Madani, M. Pilca. The S^1-equivariant Yamabe invariant of 3-manifolds [http://arxiv.org/abs/1508.02727 arxiv:1508.02727 math.DG]; 08/2015
* B. Ammann, F. Madani, M. Pilca. The S^1-equivariant Yamabe invariant of 3-manifolds [http://arxiv.org/abs/1508.02727 arxiv:1508.02727 math.DG]; 08/2015


*[https://gubler.app.uni-regensburg.de/ W. Gubler], J. Rabinoff, [https://www.uni-frankfurt.de/50278019/Werner A. Werner] Tropical Skeletons  [https://arxiv.org/pdf/1508.01179.pdf arXiv:1508.01179 math.AG]; 08/2015
*[https://gubler.app.uni-regensburg.de/ W. Gubler], J. Rabinoff, [https://www.uni-frankfurt.de/50278019/Werner A. Werner] Tropical Skeletons  [https://arxiv.org/pdf/1508.01179.pdf arXiv:1508.01179 math.AG]; 08/2015
Line 794: Line 823:
*S. Wang. Le système d'Euler de Kato en famille (II) [http://arxiv.org/abs/1312.6428 arXiv:1312.6428 math.NT]; new version 05/2015
*S. Wang. Le système d'Euler de Kato en famille (II) [http://arxiv.org/abs/1312.6428 arXiv:1312.6428 math.NT]; new version 05/2015


*A. Huber, [https://www.uni-regensburg.de/mathematik/mathematik-kings/startseite/index.html G. Kings]. Polylogarithm for families of commutative group schemes [http://arxiv.org/pdf/1505.04574.pdf arxiv:1505.04574 math.AG]; 05/2015
* A. Huber, [https://www.uni-regensburg.de/mathematik/mathematik-kings/startseite/index.html G. Kings]. Polylogarithm for families of commutative group schemes [http://arxiv.org/pdf/1505.04574.pdf arxiv:1505.04574 math.AG]; 05/2015


*M. Blank; Relative Bounded Cohomology for Groupoids [http://arxiv.org/abs/1505.05126 arXiv:1505.05126 math.AT]; 05/2015
*M. Blank; Relative Bounded Cohomology for Groupoids [http://arxiv.org/abs/1505.05126 arXiv:1505.05126 math.AT]; 05/2015
Line 804: Line 833:
*[http://mate.dm.uba.ar/~ghenry/index.html G. Henry]. Second Yamabe constant on Riemannian products. [http://arxiv.org/abs/1505.00981 arXiv:1505.00981 math.DG]; 05/2015
*[http://mate.dm.uba.ar/~ghenry/index.html G. Henry]. Second Yamabe constant on Riemannian products. [http://arxiv.org/abs/1505.00981 arXiv:1505.00981 math.DG]; 05/2015


*C. Löh. A note on bounded-cohomological dimension of discrete groups. [http://arxiv.org/abs/1504.05760 arXiv:1504.05760 math.GR]; 04/2015
* C. Löh. A note on bounded-cohomological dimension of discrete groups. [http://arxiv.org/abs/1504.05760 arXiv:1504.05760 math.GR]; 04/2015


*[http://homepage.univie.ac.at/david.fajman/ D. Fajman], [https://www.math.uni-hamburg.de/home/kroencke/ K. Kröncke]. Stable fixed points of the Einstein flow with positive cosmological constant [https://arxiv.org/abs/1504.00687 arXiv:1504.00687  math.DG]; 04/2015  
*[http://homepage.univie.ac.at/david.fajman/ D. Fajman], [https://www.math.uni-hamburg.de/home/kroencke/ K. Kröncke]. Stable fixed points of the Einstein flow with positive cosmological constant [https://arxiv.org/abs/1504.00687 arXiv:1504.00687  math.DG]; 04/2015


*S. Mahanta. Algebraic K-theory, K-regularity, and T-duality of O<sub>&infin;</sub>-stable C*-algebras. [http://arxiv.org/abs/1311.4720 arXiv:1311.4720 math.KT]; new version 04/2015
*S. Mahanta. Algebraic K-theory, K-regularity, and T-duality of O<sub>&infin;</sub>-stable C*-algebras. [http://arxiv.org/abs/1311.4720 arXiv:1311.4720 math.KT]; new version 04/2015


* [https://friedl.app.uni-regensburg.de/ S. Friedl], M. Nagel. Twisted Reidemeister torsion and the Thurston norm: graph manifolds and finite representations. [http://arxiv.org/pdf/1503.07251 arXiv:1503.07251 math.GT]; 03/2015
*[https://friedl.app.uni-regensburg.de/ S. Friedl], M. Nagel. Twisted Reidemeister torsion and the Thurston norm: graph manifolds and finite representations. [http://arxiv.org/pdf/1503.07251 arXiv:1503.07251 math.GT]; 03/2015


*[https://kerz.app.uni-regensburg.de/ M. Kerz]. A restriction isomorphism for cycles of relative dimension zero. [http://arxiv.org/abs/1503.08187 arXiv 1503.08187 math.AG]; 03/2015  
*[https://kerz.app.uni-regensburg.de/ M. Kerz]. A restriction isomorphism for cycles of relative dimension zero. [http://arxiv.org/abs/1503.08187 arXiv 1503.08187 math.AG]; 03/2015


*M. Nagel, B. Owens. Unlinking information from 4-manifolds. [http://arxiv.org/abs/1503.03092 arXiv 1503.03092 math.GT]; 03/2015
*M. Nagel, B. Owens. Unlinking information from 4-manifolds. [http://arxiv.org/abs/1503.03092 arXiv 1503.03092 math.GT]; 03/2015
Line 820: Line 849:
*B. Ammann, N. Große. Relations between threshold constants for Yamabe type bordism invariants. [http://arxiv.org/abs/1502.05232 arxiv:1502.05232 math.DG]; 02/2015
*B. Ammann, N. Große. Relations between threshold constants for Yamabe type bordism invariants. [http://arxiv.org/abs/1502.05232 arxiv:1502.05232 math.DG]; 02/2015


*R. Cluckers, F. Martin. A definable, p-adic analogue of Kiszbraun’s Theorem on extensions of Lipschitz maps. [http://arxiv.org/abs/1502.03036 arxiv:1502.03036 math.AG]; 02/2015  
*R. Cluckers, F. Martin. A definable, p-adic analogue of Kiszbraun’s Theorem on extensions of Lipschitz maps. [http://arxiv.org/abs/1502.03036 arxiv:1502.03036 math.AG]; 02/2015


*S. Mahanta. Symmetric monoidal noncommutative spectra, strongly self-absorbing C*-algebras, and bivariant homology. [http://arxiv.org/abs/1403.4130 arXiv:1403.4130 math.KT]; new version 02/2015
*S. Mahanta. Symmetric monoidal noncommutative spectra, strongly self-absorbing C*-algebras, and bivariant homology. [http://arxiv.org/abs/1403.4130 arXiv:1403.4130 math.KT]; new version 02/2015
Line 826: Line 855:
*A. Engel. Index theory of uniform pseudodifferential operators. [http://arxiv.org/abs/1502.00494 arXiv:1502.00494 math.DG]; 02/2015
*A. Engel. Index theory of uniform pseudodifferential operators. [http://arxiv.org/abs/1502.00494 arXiv:1502.00494 math.DG]; 02/2015


* [https://kerz.app.uni-regensburg.de/ M. Kerz]. Transfinite limits in topos theory. [http://arxiv.org/abs/1502.01923 arXiv:1502.01923 math.CT]; 02/2015
*[https://kerz.app.uni-regensburg.de/ M. Kerz]. Transfinite limits in topos theory. [http://arxiv.org/abs/1502.01923 arXiv:1502.01923 math.CT]; 02/2015


* F. Bambozzi, O. Ben-Bassat. Dagger Geometry As Banach Algebraic Geometry. [http://arxiv.org/abs/1502.01401v1 arXiv:1502.01401v1  math.AG]; 02/2015
*F. Bambozzi, O. Ben-Bassat. Dagger Geometry As Banach Algebraic Geometry. [http://arxiv.org/abs/1502.01401v1 arXiv:1502.01401v1  math.AG]; 02/2015


*S. Mahanta. C*-algebraic drawings of dendroidal sets. [http://arxiv.org/abs/1501.05799 arXiv:1501.05799 math.OA]; 01/2015
* S. Mahanta. C*-algebraic drawings of dendroidal sets. [http://arxiv.org/abs/1501.05799 arXiv:1501.05799 math.OA]; 01/2015


*[https://friedl.app.uni-regensburg.de/ S. Friedl], S. Tillmann. Two-generator one-relator groups and marked polytopes. [http://arxiv.org/pdf/1501.03489v1.pdf arXiv:1501.03489 math.GR]; 01/2015
*[https://friedl.app.uni-regensburg.de/ S. Friedl], S. Tillmann. Two-generator one-relator groups and marked polytopes. [http://arxiv.org/pdf/1501.03489v1.pdf arXiv:1501.03489 math.GR]; 01/2015


*[https://www.uni-regensburg.de/mathematik/mathematik-kings/startseite/index.html G. Kings], D. Loeffler, S. Zerbes. Rankin-Eisenstein classes for modular forms. [http://arxiv.org/pdf/1501.03289.pdf arxiv:1501.03289 math.NT]; 01/2015
*[https://www.uni-regensburg.de/mathematik/mathematik-kings/startseite/index.html G. Kings], D. Loeffler, S. Zerbes. Rankin-Eisenstein classes for modular forms. [http://arxiv.org/pdf/1501.03289.pdf arxiv:1501.03289 math.NT]; 01/2015  


*R. Zentner. A class of knots with simple SU(2) representations. [http://arxiv.org/pdf/1501.02504.pdf arXiv:1501.02504 math.GT]; 01/2015
*R. Zentner. A class of knots with simple SU(2) representations. [http://arxiv.org/pdf/1501.02504.pdf arXiv:1501.02504 math.GT]; 01/2015


*J. Lind, V. Angeltveit.  Uniqueness of BP<n>. [http://arxiv.org/pdf/1501.01448.pdf arXiv:1501.01448 math.AT]; 01/2015  
*J. Lind, V. Angeltveit.  Uniqueness of BP<n>. [http://arxiv.org/pdf/1501.01448.pdf arXiv:1501.01448 math.AT]; 01/2015


*S. Mahanta. Colocalizations of noncommutative spectra and bootstrap categories. [http://arxiv.org/abs/1412.8370 arXiv:1412.8370 math.KT]; new version 01/2015
*S. Mahanta. Colocalizations of noncommutative spectra and bootstrap categories. [http://arxiv.org/abs/1412.8370 arXiv:1412.8370 math.KT]; new version 01/2015
Line 848: Line 877:
*Harju A.J: Quantum Orbifolds. [http://arxiv.org/pdf/1412.4589v1.pdf arXiv:1412.4589 math.QA]; 12/2014
*Harju A.J: Quantum Orbifolds. [http://arxiv.org/pdf/1412.4589v1.pdf arXiv:1412.4589 math.QA]; 12/2014


*Harju A.J.: On Noncommutative Geometry of Orbifolds. [http://arxiv.org/pdf/1405.7139v4.pdf arXiv:1405.7139 math.DG]; 12/2014 (revision)
* Harju A.J.: On Noncommutative Geometry of Orbifolds. [http://arxiv.org/pdf/1405.7139v4.pdf arXiv:1405.7139 math.DG]; 12/2014 (revision)


*[https://friedl.app.uni-regensburg.de/ S. Friedl], M. Nagel. 3-manifolds that can be made acyclic. [http://arxiv.org/pdf/1412.4280 arXiv:1412.4280 math.GT]; 12/2014
*[https://friedl.app.uni-regensburg.de/ S. Friedl], M. Nagel. 3-manifolds that can be made acyclic. [http://arxiv.org/pdf/1412.4280 arXiv:1412.4280 math.GT]; 12/2014


*[https://www.uni-regensburg.de/mathematik/mathematik-kings/startseite/index.html G. Kings], D. Roessler. Higher analytic torsion, polylogarithms and norm compatible elements on abelian schemes. [http://arxiv.org/pdf/1412.2925v1.pdf arXiv:1412:2925 math.AG]; 12/2014
* [https://www.uni-regensburg.de/mathematik/mathematik-kings/startseite/index.html G. Kings], D. Roessler. Higher analytic torsion, polylogarithms and norm compatible elements on abelian schemes. [http://arxiv.org/pdf/1412.2925v1.pdf arXiv:1412:2925 math.AG]; 12/2014


*[https://friedl.app.uni-regensburg.de/ S. Friedl], D. Silver, S. Wiliams. The Turaev and Thurston norms. [http://arxiv.org/pdf/1412.2406.pdf arXiv:1412.2406 math.GT]; 12/2014
* [https://friedl.app.uni-regensburg.de/ S. Friedl], D. Silver, S. Wiliams. The Turaev and Thurston norms. [http://arxiv.org/pdf/1412.2406.pdf arXiv:1412.2406 math.GT]; 12/2014


*[http://www.math.uni-hamburg.de/home/belgun/ F. Belgun] Geodesics and Submanifold Structures in Conformal Geometry. [https://arxiv.org/abs/1411.4404 arXiv:1411.4404 math.DG]; 11/2014
* [http://www.math.uni-hamburg.de/home/belgun/ F. Belgun] Geodesics and Submanifold Structures in Conformal Geometry. [https://arxiv.org/abs/1411.4404 arXiv:1411.4404 math.DG]; 11/2014


*J. Dubois, [https://friedl.app.uni-regensburg.de/ S. Friedl],  W. Lueck. The L^2-Alexander torsion is symmetric. [http://arxiv.org/pdf/1411.2292.pdf arXiv:1411.2292 math.GT]; 11/2014
*J. Dubois, [https://friedl.app.uni-regensburg.de/ S. Friedl],  W. Lueck. The L^2-Alexander torsion is symmetric. [http://arxiv.org/pdf/1411.2292.pdf arXiv:1411.2292 math.GT]; 11/2014
Line 864: Line 893:
*X. Shen. On the l-adic cohomology of some p-adically uniformized Shimura varieties. [http://arxiv.org/pdf/1411.0244v1.pdf arXiv:1411.0244 math.NT]; 11/2014
*X. Shen. On the l-adic cohomology of some p-adically uniformized Shimura varieties. [http://arxiv.org/pdf/1411.0244v1.pdf arXiv:1411.0244 math.NT]; 11/2014


*F. Martin. Overconvergent subanalytic subsets in the framework of Berkovich spaces [https://arxiv.org/abs/1211.6684 arXiv:1211.6684]; 10/2014
* F. Martin. Overconvergent subanalytic subsets in the framework of Berkovich spaces [https://arxiv.org/abs/1211.6684 arXiv:1211.6684]; 10/2014


*J. Dubois, [https://friedl.app.uni-regensburg.de/ S. Friedl],  W. Lueck. Three flavors of twisted invariants of knots. [http://arxiv.org/pdf/1410.6924.pdf arXiv:1410.6924 math.GT]; 10/2014
*J. Dubois, [https://friedl.app.uni-regensburg.de/ S. Friedl],  W. Lueck. Three flavors of twisted invariants of knots. [http://arxiv.org/pdf/1410.6924.pdf arXiv:1410.6924 math.GT]; 10/2014


* J. Dubois, [https://friedl.app.uni-regensburg.de/ S. Friedl],  W. Lueck. The L^2-Alexander torsion of 3-manifolds. [http://arxiv.org/pdf/1410.6918.pdf arXiv:1410.6918 math.GT]; 10/2014
*J. Dubois, [https://friedl.app.uni-regensburg.de/ S. Friedl],  W. Lueck. The L^2-Alexander torsion of 3-manifolds. [http://arxiv.org/pdf/1410.6918.pdf arXiv:1410.6918 math.GT]; 10/2014


*A. Beilinson, [https://www.uni-regensburg.de/mathematik/mathematik-kings/startseite/index.html G. Kings], A. Levin. Topological polylogarithms and p-adic interpolation of L-values of totally real fields. [http://arxiv.org/pdf/1410.4741v1.pdf arXiv:1410:4741 math.NT]; 10/2014
*A. Beilinson, [https://www.uni-regensburg.de/mathematik/mathematik-kings/startseite/index.html G. Kings], A. Levin. Topological polylogarithms and p-adic interpolation of L-values of totally real fields. [http://arxiv.org/pdf/1410.4741v1.pdf arXiv:1410:4741 math.NT]; 10/2014


* M. Nagel. Minimal genus in circle bundles over 3-manifolds. [http://arxiv.org/pdf/1410.4018.pdf arXiv 1410.4018 math.GT]; 10/2014
*M. Nagel. Minimal genus in circle bundles over 3-manifolds. [http://arxiv.org/pdf/1410.4018.pdf arXiv 1410.4018 math.GT]; 10/2014


* [http://www.nullplug.org/ J. Noel] Nilpotence in the symplectic bordism ring. [http://arxiv.org/abs/1410.3847 arxiv 1410.3847 math.AT] To appear Cont. Mathematics.
*[http://www.nullplug.org/ J. Noel] Nilpotence in the symplectic bordism ring. [http://arxiv.org/abs/1410.3847 arxiv 1410.3847 math.AT] To appear Cont. Mathematics.


*[https://friedl.app.uni-regensburg.de/ S. Friedl], M. Nagel, M. Powell. A specious unlinking strategy. [http://arxiv.org/pdf/1410.2052.pdf arXiv:1410.2052 math.GT]; 10/2014  
*[https://friedl.app.uni-regensburg.de/ S. Friedl], M. Nagel, M. Powell. A specious unlinking strategy. [http://arxiv.org/pdf/1410.2052.pdf arXiv:1410.2052 math.GT]; 10/2014


*[http://www.mimuw.edu.pl/~mcboro/ M. Borodzik], [https://friedl.app.uni-regensburg.de/ S. Friedl], M. Powell. Blanchfield forms and Gordian distance [http://arxiv.org/pdf/1409.8421.pdf arXiv:1409.8421 math.GT]; 09/2014  
*[http://www.mimuw.edu.pl/~mcboro/ M. Borodzik], [https://friedl.app.uni-regensburg.de/ S. Friedl], M. Powell. Blanchfield forms and Gordian distance [http://arxiv.org/pdf/1409.8421.pdf arXiv:1409.8421 math.GT]; 09/2014


*[http://homepages.uni-regensburg.de/~nan25776/ N. Naumann], [http://homepages.uni-regensburg.de/~spj54141/ J. Sprang]. p-adic interpolation and multiplicative orientations of KO and tmf. [http://arxiv.org/pdf/1409.5314v1.pdf arXiv:1409.5314 math.AT]; 09/2014
*[http://homepages.uni-regensburg.de/~nan25776/ N. Naumann], [http://homepages.uni-regensburg.de/~spj54141/ J. Sprang]. p-adic interpolation and multiplicative orientations of KO and tmf. [http://arxiv.org/pdf/1409.5314v1.pdf arXiv:1409.5314 math.AT]; 09/2014
Line 884: Line 913:
*P. Jell. A Poincaré lemma for real valued differential forms on Berkovich spaces. [http://arxiv.org/abs/1409.0676 arXiv:1409:0676 math.AG]; 09/2014 [http://link.springer.com/article/10.1007%2Fs00209-015-1583-8 Publication at Mathematische Zeitschrift DOI: 10.1007/s00209-015-1583-8] 11/15
*P. Jell. A Poincaré lemma for real valued differential forms on Berkovich spaces. [http://arxiv.org/abs/1409.0676 arXiv:1409:0676 math.AG]; 09/2014 [http://link.springer.com/article/10.1007%2Fs00209-015-1583-8 Publication at Mathematische Zeitschrift DOI: 10.1007/s00209-015-1583-8] 11/15


* R. Scheider. The de Rham realization of the elliptic polylogarithm in families. [http://arxiv.org/abs/1408.3819 arXiv:1408.3819 math.AG]; 08/2014
*R. Scheider. The de Rham realization of the elliptic polylogarithm in families. [http://arxiv.org/abs/1408.3819 arXiv:1408.3819 math.AG]; 08/2014


*G. Tamme. On an analytic version of Lazard's isomorphism. [http://arxiv.org/abs/1408.4301 arXiv:1408.4301 math.NT]; 08/2014
*G. Tamme. On an analytic version of Lazard's isomorphism. [http://arxiv.org/abs/1408.4301 arXiv:1408.4301 math.NT]; 08/2014

Latest revision as of 11:27, 31 March 2025

Topics

Invariants play a dominant role in all of mathematics: Invariants should be fine enough to extract the right information, but coarse enough to be computable in specific cases. Higher invariants are a structural and hierarchical refinement of certain classical invariants. The long term goal of this Collaborative Research Centre is to formulate the principles of construction and computation of higher invariants in a systematic way.

  • Higher Chern classes
  • Volumes, L-functions, and polylogarithms
  • Metric structures on cohomology, vector bundles, and cycles
  • Higher categories and enriched structures

Projects and principal investigators

Publications/Preprints (in reverse chronological order)

2025

  • K. Li, L. Sanchez Saldana. A note on finiteness properties of vertex stabilisers, arXiv:2502.14751; 02/2025.

2024

  • N. Naumann, L. Pol, Maxime Ramzi, Separable commutative algebras in equivariant homotopy theory. arXiv:2411.06845;11/2024
  • U. Bunke, M. Ludewig, Coronas and Callias type operators in coarse geometry arXiv:2411.01646; 11/2024
  • N. Deshmukh, S. Yadav. A^1- connected stacky curves and the Brauer group of moduli of elliptic curves, arxiv:2410.01525; 10/2024
  • Magnus Carlson, Peter Haine, S. Wolf, Reconstruction of schemes from their étale topoi, 2407.19920; 07/2024.
  • B. Cnossen, R. Haugseng, T. Lenz, S. Linskens. Normed equivariant ring spectra and higher Tambara functors, arXiv:2407.08399; 07/2024
  • M. Ludewig, Categories of Lagrangian Correspondences in Super Hilbert Spaces and Fermionic Functorial Field Theory; arXiv:2212.02956; 03/2024.
  • M. Ludewig, The Clifford Algebra Bundle on Loop Space; arXiv:2204.00798; 03/2024.
  • N. Naumann, L. Pol, Separable commutative algebras and Galois theory in stable homotopy theories. arXiv:2305.01259; Advances in Mathematics 1/2024

2023

  • M. Pippi. On some (co)homological invariants of coherent matrix factorizations, J. Noncommut. Geom. (2023), arXiv version: [1]; 08/2023.
  • C. Löh. Exponential growth rates in hyperbolic groups (after Koji Fujiwara and Zlil Sela), Exposée 1206 for the Séminaire Bourbaki (April 2023), arXiv:2304.04424 math.GR; 04/2023
  • Tobias Barthel, Natalia Castellana, Drew Heard, Niko Naumann, L. Pol, Beren Sanders, Descent in tensor triangular geometry. arXiv:2305.02308; Proceedings of the Abel Symposium 2022, 3/2023
  • T. Annala, M. Hoyois, R. Iwasa. Algebraic cobordism and a Conner-Floyd isomorphism for algebraic K-theory, arXiv:2303.02051 math.AG; 03/2023. To appear in J. Amer. Math. Soc.
  • R. Gualdi. ¿Cuántas raíces de la unidad anulan un polinomio en dos variables?, La Gaceta de la Real Sociedad Matemática Española 26 (2023), 149 — 172; 02/2023 (divulgative article)
  • C. Löh. A comment on the structure of graded modules over graded principal ideal domains in the context of persistent homology, arXiv:2301.11756 math.AC; 01/2023
  • T. Barthel, N. Castellana, D. Heard, N. Naumann, L. Pol Quillen stratification in equivariant homotopy theory.ArXiv:2301.02212, to appear in Inventiones Mathematicae;01/2023

2022

  • A. Hogadi, S. Yadav. A^1-connectivity of moduli of vector bundles on a curve. arXiv:2110.05799v2; 12/22 (updated and final version)
  • D. Beraldo, M. Pippi. Non-commutative intersection theory and unipotent Deligne-Milnor formula, arXiv:2211.11717 math.AG; 11/2022.
  • D.-C. Cisinski, M. Pippi. Étale tame vanishing cycles over [A^1_S/G_{m,S}], arXiv:2209.13381; 09/2022.
  • U. Bunke, M. Ludewig, Breaking symmetries for equivariant coarse homology theories arXiv:2112.11535; 12/2021
  • S. Linskens, D. Nardin, L. Pol. Global homotopy theory via partially lax limits. arXiv:2206.01556; to appear in Geometry and Topology, 06/2022

2021

  • A. A. Khan, C. Ravi. Generalized cohomology theories for algebraic stacks. arXiv:2106.15001; 06/2021
  • F. Hanisch, M. Ludewig. A Rigorous Construction of the Supersymmetric Path Integral Associated to a Compact Spin Manifold. arXiv:1709.10027; 03/2021
  • B. Güneysu, M. Ludewig. The Chern Character of theta-summable Fredholm Modules over dg Algebras and Localization on Loop Space. arXiv:1901.04721; 03/2021

2020

  • S. Wolf, The pro-étale topos as a category of pyknotic presheaves, Doc. Math. 27, 2067-2106 (2022) 12/2020
  • B. Ammann, J. Mougel, V. Nistor. A regularity result for the bound states of N-body Schrödinger operators: Blow-ups and Lie manifolds arXiv:2012.13902; 12/2020.
  • J.I. Burgos Gil, S. Goswami, G. Pearlstein. Height Pairing on Higher Cycles and Mixed Hodge Structures. Proceedings of the London Mathematical Society, 125 (2022), Issue 1, 61-170 [2].
  • P. Capovilla, M. Moraschini, C. Löh. Amenable category and complexity, arXiv:2012.00612; 12/2020.
  • S.Balchin, J.P.C. Greenlees, L. Pol, J. Williamson. Torsion model for tensor triangulated categories: the one-step case. arXiv:2011.10413; 11/2020
  • T. Bachmann, A. A. Khan, C. Ravi, V. Sosnilo. Categorical Milnor squares and K-theory of algebraic stacks. arXiv:2011.04355; 11/2020
  • P. Dolce, R. Gualdi, Numerical equivalence of ℝ-divisors and Shioda-Tate formula for arithmetic varieties, arXiv:2010.16134; 10/2020
  • N. Heuer, C. Löh, The spectrum of simplicial volume of non-compact manifolds, arXiv:2010.12945; 10/2020.
  • M. Ludewig, Z. Yi, A Short Proof of the Localization Formula for the Loop Space Chern Character of Spin Manifolds, arXiv:2010.05892; 10/2020.
  • C. Ravi, B. Sreedhar. Virtual equivariant Grothendieck-Riemann-Roch formula. arXiv:2009.09697; 09/2020
  • B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, K. Moi, M. Land, D. Nardin, T. Nikolaus, W. Steimle. Hermitian K-theory for stable ∞-categories III: Grothendieck-Witt groups of rings arXiv:2009.07225; 09/2020
  • M. Ludewig, G. C. Thiang. Gaplessness of Landau Hamiltonians on hyperbolic half-planes via coarse geometry. arXiv:2009.07688; 09/2020..
  • B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, K. Moi, M. Land, D. Nardin, T. Nikolaus, W. Steimle. Hermitian K-theory for stable ∞-categories II: Cobordism categories and additivity arXiv:2009.07224; 09/2020
  • B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, K. Moi, M. Land, D. Nardin, T. Nikolaus, W. Steimle. Hermitian K-theory for stable ∞-categories I: Foundations arXiv:2009.07223; 09/2020
  • Y. Kezuka, Tamagawa number divisibility of central L-values of twists of the Fermat elliptic curve. arXiv:2003.02772 math.NT; 08/2020
  • S. Baader, R. Blair, A. Kjuchukova and F. Misev. The bridge number of arborescent links with many twigs. arXiv:2008.00763; 08/2020
  • S. Friedl, T. Kitayama, L. Lewark, M. Nagel and M. Powell. Homotopy ribbon concordance, Blanchfield pairings, and twisted Alexander polynomials. arXiv:2007.15289; 08/2020
  • G. Herrmann and J. P. Quintanilha. The Complex of Hypersurfaces in a Homology Class. arXiv:2007.00522; 07/2020
  • M. Ludewig, S. Roos. The Chiral Anomaly of the Free Fermion in Functorial Field Theory. arXiv:2010.05892; Ann. Henri Poincare, 21:1191-1233, 06/2020.
  • M. Ludewig, G. C. Thiang. Good Wannier bases in Hilbert modules associated to topological insulators. arXiv:1904.13051; J. Math. Phys., 61, 061902, 06/2020.
  • H. Esnault and M. Kerz. Density of Arithmetic Representations of Function Fields. arXiv:2005.12819; 05/2020
  • S. Boucksom, W. Gubler, F. Martin. Differentiability of relative volumes over an arbitrary non-archimedean field. arXiv:2004.03847; 04/2020
  • C. Löh. Ergodic theoretic methods in group homology. A minicourse on L2-Betti numbers in group theory. SpringerBriefs in Mathematics, Springer, DOI 10.1007/978-3-030-44220-0 03/2020.
  • N. Ginoux, G. Habib, M. Pilca, U. Semmelmann. An Obata-type characterization of doubly-warped product Kähler manifolds. arxiv:2002.08808; 02/2020
  • N. Ginoux, G. Habib, M. Pilca, U. Semmelmann. An Obata-type characterization of Calabi metrics on line bundles. arxiv:2002.08810; 02/2020
  • T. Barthel, D. Heard, N. Castellana, G. Valenzuela. Local Gorenstein duality for cochains on spaces. arXiv:2001.02580; 01/2020. Journal of Pure and Applied Algebra, Volume 225, Issue 2, February 2021
  • M. Ludewig, A. Stoffel. A framework for geometric field theories and their classification in dimension one. arXiv:2001.05721; 01/2020.


2019

  • M. Moraschini, Alessio Savini. Multiplicative constants and maximal measurable cocycles in bounded cohomology. arXiv:1912.09731; 12/2019
  • R. Frigerio, M. Moraschini. Gromov's theory of multicomplexes with applications to bounded cohomology and simplicial volume, arXiv:1808.07307 math.GT; 12/2019; To appear in Memoirs of the American Mathematical Society.
  • Y. Kezuka, Y. Li, A classical family of elliptic curves having rank one and the 2-primary part of their Tate-Shafarevich group non-trivial. arXiv:1911.04532 math.NT; 11/2019
  • N. Heuer, C. Löh. Simplicial volume of one-relator groups and stable commutator length, arXiv:1911.02470 math.GT; 11/2019
  • B. Ammann; J. Mougel; V. Nistor, A comparison of the Georgescu and Vasy spaces associated to the N-body problems. arXiv:1910.10656 math-ph; 10/2019
  • S. Friedl, M. Nagel, P. Orson, M. Powell. A survey of the foundations of four-manifold theory in the topological category. arXiv:1910.07372; 10/2019
  • D. Fauser, C. Löh, M. Moraschini, J. P. Quintanilha. Stable integral simplicial volume of 3-manifolds, arXiv:1910.06120 math.GT; 10/2019
  • V. Wanner, Energy Minimization Principle for non-archimedean curves. arXiv:1909.11335; 09/2019.
  • M. Moraschini, Alessio Savini. A Matsumoto-Mostow result for Zimmer's cocycles of hyperbolic lattices. arXiv:1909.00846; 09/2019 To appear in Transformation Groups.
  • Imre Bokor, Diarmuid Crowley, S. Friedl, Fabian Hebestreit, Daniel Kasprowski, Markus Land, Johnny Nicholson Connected sum decompositions of high-dimensional manifolds. arXiv:1909.02628; 09/2019
  • M. Lüders, Algebraization for zero-cycles and the p-adic cycle class map, Mathematical Research Letters, Volume 26 (2019) Number 2, pp. 557-585.
  • M. Lüders, A restriction isomorphism for zero cyclces with coefficients in Milnor K-theory, Cambridge Journal of Mathematics, Volume 7 (2019) Number 1-2, pp. 1-31.
  • H. Esnault, M. Kerz, Etale cohomology of rank one l-adic local systems in positive characteristic, arxiv:1908.08291; 08/2019
  • H.K.Nguyen, Covariant & Contravariant Homotopy Theories, arxiv:1908.06879; 08/2019
  • Y. Kezuka, On the main conjecture of Iwasawa theory for certain non-cyclotomic ℤp-extensions. arXiv:1711.07554 math.NT; J. Lond. Math. Soc., Vol. 100, pp. 107-136, 8/2019
  • Y. Kezuka, J. Choi, Y. Li, Analogues of Iwasawa's μ=0 conjecture and the weak Leopoldt conjecture for a non-cyclotomic ℤ2-extension. arXiv:1711.01697 math.NT; Asian J. Math., Vol. 23, No. 3, pp. 383-400, 7/2019
  • L. Prader, A local–global principle for surjective polynomial maps, arXiv:1909.11690; Journal of Pure and Applied Algebra 223(6), 06/2019, pp. 2371-2381
  • P. Feller, L. Lewark. Balanced algebraic unknotting, linking forms, and surfaces in three- and four-space. arXiv:1905.08305; 05/2019
  • P. Antonini, A. Buss, A. Engel, T. Siebenand. Strong Novikov conjecture for low degree cohomology and exotic group C*-algebras, arXiv:1905.07730 math.KT; 05/2019
  • T. Barthel, D. Heard, N. Castellana, G. Valenzuela. On stratification for spaces with Noetherian mod p cohomology. arxiv:1904.12841; 04/2019
  • K. Bohlen, J. M. Lescure. A geometric approach to K-homology for Lie manifolds, arXiv:1904.04069; 04/2019
  • V. Ertl. A new proof of a vanishing result due to Berthelot, Esnault, and Rülling. arXiv:1805.06269 math.NT; 04/2019 to appear in the Journal of Number Theory.
  • B. Ammann; K. Kröncke, O. Müller. Construction of initial data sets for Lorentzian manifolds with lightlike parallel spinors. Commun. Math. Phys. 387, 77-109 (2021), doi: 10.1007/s00220-021-04172-1, arXiv:1903.02064 math.DG; 03/2019

2018

  • F. Binda,S. Saito, Semi-purity for cycles with modulus arXiv:1812.01878; 12/2018.
  • B. Ammann; N. Große; V Nistor, Analysis and boundary value problems on singular domains: an approach via bounded geometry. arXiv:1812.09898 math.AP; 12/2018
  • B. Ammann; N. Große; V Nistor, The strong Legendre condition and the well-posedness of mixed Robin problems on manifolds with bounded geometry. arXiv:1810.06926 math.AP; 10/2018
  • S. Friedl, JungHwan Park, Bram Petri, Jean Raimbault and Arunima Ray, On distinct finite covers of 3-manifolds. arXiv:1807.09861; 07/2018
  • V. Ertl, K. Yamada. Comparison between rigid syntomic and crystalline syntomic cohomology for strictly semistable log schemes with boundary. arXiv:1805.04974 math.NT; 05/2018.
  • M. Marcinkowski, Aut-invariant word norm on right angled Artin and Coxeter groups. arXiv:1803.00294; 03/2018
  • J. Sprang, The algebraic de Rham realization of the elliptic polylogarithm via the Poincaré bundle. arXiv:1802.04996; 02/2018
  • Y. Kezuka, On the p-part of the Birch-Swinnerton-Dyer conjecture for elliptic curves with complex multiplication by the ring of integers of ℚ(√-3). arXiv:1605.08245 math.NT; Math. Proc. Camb. Philos. Soc., 164, pp. 67-98, 1/2018
  • V. Wanner, Comparison of two notions of subharmonicity on non-archimedean curves. arXiv: 1801.04713; 01/2018

2017

  • G. Cortiñas, J. Cuntz, R. Meyer, and G. Tamme, Weak completions, bornologies and rigid cohomology. arXiv:1712.08004 math.AG; 12/2017
  • T. Barthel, T. Schlank, N. Stapleton, Chromatic homotopy theory is asymptotically algebraic. arXiv:1711.00844; 11/2017
  • P. Jell, J. Rau, K. Shaw Lefschetz (1,1)-theorem in tropical geometry. Epijournal de Géometrie Algébrique, volume 2, article no. 11 (2018)arXiv:1711.07900;11/2017
  • F. Binda and A. Krishna, Zero cycles with modulus and zero cycles on singular varieties, to appear in Compositio Math, arXiv:1512.04847v4 [math.AG].
  • G. Cortiñas, J. Cuntz, R. Meyer, and G. Tamme, Nonarchimedean bornologies, cyclic homology and rigid cohomology. arXiv:1708.00357 math.AG; 08/2017
  • F. Hebestreit, M. Land, W. Lück, O. Randal-Williams. A Vanishing theorem for tautological classes of aspherical manifolds. arXiv:1705.06232 math.AT; 05/2017
  • S.P. Reeh, T.M. Schlank, N. Stapleton, A formula for p-completion by way of the Segal conjecture. arxiv:1704.00271 math.AT; 04/2017
  • F. Binda, Torsion zero cycles with modulus on affine varieties.arXiv:1604.06294 math.AG, to appear in J. of Pure and App. Algebra.
  • F. Binda, J. Cao, W. Kai and R. Sugiyama, Torsion and divisibility for reciprocity sheaves and 0-cycles with modulus, J. of Algebra, Vol. 469, 1, 2017.

2016

  • U. Jannsen, S. Saito, Y. Zhao. Duality for relative logarithmic de Rham-Witt sheaves and wildly ramified class field theory over finite fields. arXiv:1611.08720 math.AG; 11/2016
  • N. Otoba; J. Petean, Solutions of the Yamabe equation on harmonic Riemannian submersions, arXiv:1611.06709 math.DG; 11/2016
  • B. Ammann; N. Große; V Nistor, Well-posedness of the Laplacian on manifolds with boundary and bounded geometry arXiv:1611.00281 math.AP; 11/2016
  • S. Baader, P. Feller, L. Lewark, R. Zentner, Khovanov width and dealternation number of positive braid links, arXiv:1605.04534 math.GT; 10/2016
  • V. Ertl. Full faithfulness for overconvergent F-de Rham-Witt connections. arXiv:1411.7182 math.NT; Comptes rendus - Mathématique vol. 354, no. 7, pp. 653-658, 07/2016.
  • D. Scarponi, Sparsity of p-divisible unramified liftings for subvarieties of abelian varieties with trivial stabilizer. arXiv:1602.08755v3; 02/2016
  • O. Gwilliam, D. Pavlov. Enhancing the filtered derived category. arXiv:1602.01515, accepted by J. Pure Appl. Algebra; 02/2016
  • O. Raventós. Transfinite Adams representability. arXiv:1304.3599; new version 02/2016

2015

  • D. Scarponi, The realization of the degree zero part of the motivic polylogarithm on abelian schemes in Deligne-Beilinson cohomology. arXiv:1512.01997; 12/2015
  • B. Ammann; Klaus Kröncke, Hartmut Weiß, Frederik Witt. Holonomy rigidity for Ricci-flat metrics, arXiv:1512.07390 math.DG; 12/2015
  • F. Bambozzi, O. Ben-Bassat, K. Kremnizer . Stein Domains in Banach Algebraic Geometry. arxiv:1511.09045 math.AG; 11/2015
  • F. Martin; Analytic functions on tubes of non-Archimedean analytic spaces, with an appendix by Christian Kappen arXiv:1510.01178; 10/2015
  • O. Müller, N. Nowaczyk, A universal spinor bundle and the Einstein-Dirac-Maxwell equation as a variational theory, arXiv:1504.01034 math.DG; 10/2015
  • P. Feller, S. Pohlmann, R. Zentner, Alternating numbers of torus knots with small braid index, arXiv:1508.05825; 08/2015
  • I. Barnea, M. Joachim, S. Mahanta. Model structure on projective systems of C*-algebras and bivariant homology theories. math.KT; 08/2015
  • R. Nakad, M. Pilca. Eigenvalue Estimates of the spin^c Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds. arXiv:1502.05252 math.DG; 07/2015
  • O. Raventós. The hammock localization preserves homotopies. arXiv:1404.7354; new version 05/2015
  • S. Mahanta. Algebraic K-theory, K-regularity, and T-duality of O-stable C*-algebras. arXiv:1311.4720 math.KT; new version 04/2015
  • B. Ammann, N. Große. Relations between threshold constants for Yamabe type bordism invariants. arxiv:1502.05232 math.DG; 02/2015
  • R. Cluckers, F. Martin. A definable, p-adic analogue of Kiszbraun’s Theorem on extensions of Lipschitz maps. arxiv:1502.03036 math.AG; 02/2015
  • S. Mahanta. Symmetric monoidal noncommutative spectra, strongly self-absorbing C*-algebras, and bivariant homology. arXiv:1403.4130 math.KT; new version 02/2015
  • S. Mahanta. Colocalizations of noncommutative spectra and bootstrap categories. arXiv:1412.8370 math.KT; new version 01/2015

2014

  • X. Shen. On the l-adic cohomology of some p-adically uniformized Shimura varieties. arXiv:1411.0244 math.NT; 11/2014
  • F. Martin. Overconvergent subanalytic subsets in the framework of Berkovich spaces arXiv:1211.6684; 10/2014
Personal Tools
  • Log in

  • Wiki Tools
  • Page
  • Discussion
  • View source
  • History