University of Regensburg
Faculty of Mathematics

HomeAboutPeopleEventsResearchRTGGuest ProgrammeImpressum

From SFB1085 - Higher Invariants
Jump to navigationJump to search
No edit summary
No edit summary
Line 5: Line 5:
'''Time and place:''' Thursday 10-12, SFB Lecture Hall.
'''Time and place:''' Thursday 10-12, SFB Lecture Hall.


{|border="1"
{| border="1"
!No
!No
!Date
!Date
Line 18: Line 18:
|2
|2
|27.04.2023  
|27.04.2023  
|Representations and pseudo-representations with coefficients in Artin rings
|Group representations and semi-simple algebras
|Guillermo Gamarra-Segovia
|Chiara Sabadin
|-
|-
|3
|3
|04.05.2023
|04.05.2023
|Deformation of group representations  
|Representations and pseudo-representations with coefficients in Artin rings
|Zhenghang Du
|Guillermo Gamarra-Segovia
|-
|-
|4
|4
|11.05.2023
| 11.05.2023
|  
|Representations and pseudo-representations with coefficients in Artin rings
|  
|Guillermo Gamarra-Segovia
|-
|-
|5
|5
|18.05.2023
|18.05.2023
|holiday
|holiday
|  
|  
|-
|-
|6
|6
|25.05.2023
|25.05.2023
|Adelic GL2 (optional shorter talk)
|Deformation of group representations
|N.N.
| Zhenghang Du
|-
|-
|7
| 7
|01.06.2023
|01.06.2023
|Adelic and classical modular forms
|Deformation of group representations
|
|Zhenghang Du
|-
|-
|8
|8
|08.06.2023
|08.06.2023
|(HOLIDAY)
|
|-
|9
|15.06.2023
|The ''q''-expansion principle and ''p''-adic Hecke algebras
|The ''q''-expansion principle and ''p''-adic Hecke algebras
|Julio de Mello Bezerra
|Julio de Mello Bezerra
|-
|9
|15.06.2023
|Modular Galois representations
|Lukas Prader 
|-
|-
|10
|10
|22.06.2023
| 22.06.2023
|Universal deformation rings and Taylor-Wiles systems
| Modular Galois representations
|  
|Lukas Prader
|-
|-
|11
|11
|29.06.2023
|29.06.2023
|Taylor-Wiles systems for the Hecke algebra
| Universal deformation rings and Taylor-Wiles systems
|
|
|-
|-
|12
| 12
|06.07.2023
|06.07.2023
|  
|Taylor-Wiles systems for the Hecke algebra
|  
|
|-
|-
|13
|13
|13.07.2023
| 13.07.2023
|
|Adelic GL2 (optional shorter talk)
|  
|
|-
|-
|14
|14
|20.07.2023
|20.07.2023
|
|Acdelic and classical modular forms (canceled)
|  
|
|-
|-
|}
|}
Line 90: Line 90:
'''Main conjecture for totally real fields'''
'''Main conjecture for totally real fields'''


{|border="1"
{| border="1"
!No
!No
!Date
!Date
!Title / Abstract
! Title / Abstract
!Speaker
!Speaker
|-
|-
|1
|1
|19.10.2022  
|19.10.2022
|The p-adic L-function and the main conjecture
|The p-adic L-function and the main conjecture
|Julio de Mello Bezerra
|Julio de Mello Bezerra
|-
|-
|2
| 2
|26.10.2022  
|26.10.2022
|The p-adic L-function and the main conjecture (continuation)
|The p-adic L-function and the main conjecture (continuation)
|Julio de Mello Bezerra  
|Julio de Mello Bezerra
|-
|-
|3
|3
|02.11.2022
|02.11.2022
|\Lambda-adic modular forms  
|\Lambda-adic modular forms
|Guillermo Gamarra-Segovia  
|Guillermo Gamarra-Segovia
|-
|-
|4
|4
|09.11.2022
|09.11.2022
|\Lambda-adic modular forms (continuation)  
|\Lambda-adic modular forms (continuation)
|Guillermo Gamarra-Segovia  
|Guillermo Gamarra-Segovia
|-
|-
|5
|5
|16.11.2022
|16.11.2022
|\Lambda-adic Eisenstein series
|\Lambda-adic Eisenstein series
|Lukas Prader  
|Lukas Prader
|-
|-
|6
|6
Line 137: Line 137:
|-
|-
|9
|9
|14.12.2022  
|14.12.2022
|Galois representations associated to \Lambda-adic forms (continuation)
|Galois representations associated to \Lambda-adic forms (continuation)
|Chiara Sabadin
| Chiara Sabadin
|-
|-
|10
|10
|21.12.2022
|21.12.2022
|The Eisenstein ideal and stable lattices
|The Eisenstein ideal and stable lattices
|Han-Ung Kufner  
|Han-Ung Kufner
|-
|-
|11
|11
|11.01.2023
|11.01.2023
|The Eisenstein ideal and stable lattices (continuation)
|The Eisenstein ideal and stable lattices (continuation)
|Han-Ung Kufner  
|Han-Ung Kufner
|-
|-
|12
|12
|18.01.2023
|18.01.2023
|The Eisenstein ideal and stable lattices (continuation)
|The Eisenstein ideal and stable lattices (continuation)
|Han-Ung Kufner  
|Han-Ung Kufner
|-
|-
|13
|13
|01.02.2023
|01.02.2023
|The Galois representation of a stable lattice
|The Galois representation of a stable lattice
|Johannes Sprang  
|Johannes Sprang
|-
|-
|14
|14
|
|
|
|
|  
|
|-
|-
|}
|}

Revision as of 08:37, 1 June 2023

AG Seminar SummerSemester 23

Oberseminar Modular Galois representations

Time and place: Thursday 10-12, SFB Lecture Hall.

No Date Title / Abstract Speaker
1 20.04.2023 Group representations and semi-simple algebras Chiara Sabadin
2 27.04.2023 Group representations and semi-simple algebras Chiara Sabadin
3 04.05.2023 Representations and pseudo-representations with coefficients in Artin rings Guillermo Gamarra-Segovia
4 11.05.2023 Representations and pseudo-representations with coefficients in Artin rings Guillermo Gamarra-Segovia
5 18.05.2023 holiday
6 25.05.2023 Deformation of group representations Zhenghang Du
7 01.06.2023 Deformation of group representations Zhenghang Du
8 08.06.2023 (HOLIDAY)
9 15.06.2023 The q-expansion principle and p-adic Hecke algebras Julio de Mello Bezerra
10 22.06.2023 Modular Galois representations Lukas Prader
11 29.06.2023 Universal deformation rings and Taylor-Wiles systems
12 06.07.2023 Taylor-Wiles systems for the Hecke algebra
13 13.07.2023 Adelic GL2 (optional shorter talk)
14 20.07.2023 Acdelic and classical modular forms (canceled)





AG Seminar WinterSemester 22/23

Main conjecture for totally real fields

No Date Title / Abstract Speaker
1 19.10.2022 The p-adic L-function and the main conjecture Julio de Mello Bezerra
2 26.10.2022 The p-adic L-function and the main conjecture (continuation) Julio de Mello Bezerra
3 02.11.2022 \Lambda-adic modular forms Guillermo Gamarra-Segovia
4 09.11.2022 \Lambda-adic modular forms (continuation) Guillermo Gamarra-Segovia
5 16.11.2022 \Lambda-adic Eisenstein series Lukas Prader
6 23.11.2022 \Lambda-adic Eisenstein series (continuation) Lukas Prader
7 30.11.2022 \Lambda-adic cusp forms Zhenghang Du
8 07.12.2022 Galois representations associated to \Lambda-adic forms Chiara Sabadin
9 14.12.2022 Galois representations associated to \Lambda-adic forms (continuation) Chiara Sabadin
10 21.12.2022 The Eisenstein ideal and stable lattices Han-Ung Kufner
11 11.01.2023 The Eisenstein ideal and stable lattices (continuation) Han-Ung Kufner
12 18.01.2023 The Eisenstein ideal and stable lattices (continuation) Han-Ung Kufner
13 01.02.2023 The Galois representation of a stable lattice Johannes Sprang
14
Personal Tools
  • Log in

  • Wiki Tools
  • Page
  • Discussion
  • View source
  • History