University of Regensburg
Faculty of Mathematics

HomeAboutPeopleEventsResearchRTGGuest ProgrammeImpressum

From SFB1085 - Higher Invariants
Jump to navigationJump to search
No edit summary
No edit summary
Line 40: Line 40:
   <tr>
   <tr>
     <td><b>2</b></td>
     <td><b>2</b></td>
     <td> 22 April </td>
     <td> </td>
     <td></td>
     <td></td>
     <td> M 311 </td>
     <td> </td>
     <td></td>
     <td></td>
     <td> Lukas Krinner </td>
     <td> </td>
     <td></td>
     <td></td>
     <td> ''Gromov-Hausdorff convergence'' </td>
     <td> </td>
   </tr>
   </tr>


   <tr>
   <tr>
     <td><b>3</b></td>
     <td><b>3</b></td>
     <td> 29 April </td>
     <td> </td>
     <td></td>
     <td></td>
     <td> M 311 </td>
     <td> </td>
     <td></td>
     <td></td>
     <td> Debam Biswas </td>
     <td> </td>
     <td></td>
     <td></td>
     <td> ''Universal spaces'' </td>
     <td> </td>
   </tr>
   </tr>



Revision as of 17:36, 12 February 2025


Higher Invariants Oberseminar (HIOB)   (Summer Semester 2025)
Berkovich Motives

HIOB-Organizers:


Time and place:


Zoom Details:
Meeting ID: [link]

Schedule

The detailed program is here: [link].

Date   Room   Speaker   Topic
1
2
3
4 6 May M 311 Niklas Kipp Alexandrov geometry I
- 13 May No HIOB: Conference "From Analysis to Homotopy Theory"
- 20 May Holiday
5 27 May M 311 Johannes Gloßner Alexandrov geometry II
6 3 June M 311 Benjamin Dünzinger Pointed Gromov-Hausdorff convergence and C^k-convergence
7 10 June M 311 Raphael Schmidpeter Cheeger finiteness theorem
8 17 June M 311 Chiara Sabadin Introduction to geometric group theory
B 24 June PHY 5.1.01* Jonathan Glöckle Bonus talk: Applied topology in viral evolution
9 1 July M 311 Franziska Hofmann Gromov’s theorem on polynomial growth
10 8 July M 311 Matthias Uschold The Bestvina-Paulin method
D 15 July M 311 everyone Discussion for the next HIOB

* Change of rooms due to Summer School "Interactions between algebra, equivariance, and homotopy theory" (on 24 June).

Personal Tools
  • Log in

  • Wiki Tools
  • Page
  • Discussion
  • View source
  • History