University of Regensburg
Faculty of Mathematics

HomeAboutPeopleEventsResearchRTGGuest ProgrammeImpressum

From SFB1085 - Higher Invariants
Jump to navigationJump to search
m (Formatierung)
(add speakers in July, switch rooms back to M311)
 
(One intermediate revision by one other user not shown)
Line 123: Line 123:
     <td> M 311 </td>
     <td> M 311 </td>
     <td></td>
     <td></td>
     <td> </td>
     <td> Raphael Schmidpeter </td>
     <td> </td>
     <td> </td>
     <td> ''Cheeger finiteness theorem'' </td>
     <td> ''Cheeger finiteness theorem'' </td>
Line 145: Line 145:
     <td> PHY 5.1.01* </td>
     <td> PHY 5.1.01* </td>
     <td></td>
     <td></td>
     <td> </td>
     <td>Jonathan Glöckle</td>
     <td></td>
     <td></td>
     <td> Bonus talk: ''Applied topology in viral evolution'' </td>
     <td> Bonus talk: ''Applied topology in viral evolution'' </td>
Line 154: Line 154:
     <td> 1 July </td>
     <td> 1 July </td>
     <td></td>
     <td></td>
     <td> PHY 5.1.01* </td>
     <td> M 311 </td>
     <td></td>
     <td></td>
     <td> </td>
     <td>Franziska Hofmann</td>
     <td></td>
     <td></td>
     <td> ''Gromov’s theorem on polynomial growth'' </td>
     <td> ''Gromov’s theorem on polynomial growth'' </td>
Line 165: Line 165:
     <td> 8 July </td>
     <td> 8 July </td>
     <td></td>
     <td></td>
     <td> PHY 5.1.01* </td>
     <td> M 311 </td>
     <td></td>
     <td></td>
     <td> </td>
     <td>Matthias Uschold</td>
     <td></td>
     <td></td>
     <td> ''The Bestvina-Paulin method'' </td>
     <td> ''The Bestvina-Paulin method'' </td>
Line 176: Line 176:
     <td> 15 July </td>
     <td> 15 July </td>
     <td></td>
     <td></td>
     <td> PHY 5.1.01* </td>
     <td> M 311 </td>
     <td></td>
     <td></td>
     <td> </td>
     <td>everyone</td>
     <td></td>
     <td></td>
     <td> ''Discussion for the next HIOB'' </td>
     <td> ''Discussion for the next HIOB'' </td>
Line 187: Line 187:
</table>
</table>


&#42; Change of rooms due to ''[https://sfb-higher-invariants.app.uni-regensburg.de/index.php?title=Page_Interactions_between_algebra_equivariance_and_homotopy_theory_Summer_School Summer School "Interactions between algebra, equivariance, and homotopy theory"]'' (on 24 June) and construction works starting 1 July.
&#42; Change of rooms due to ''[https://sfb-higher-invariants.app.uni-regensburg.de/index.php?title=Page_Interactions_between_algebra_equivariance_and_homotopy_theory_Summer_School Summer School "Interactions between algebra, equivariance, and homotopy theory"]'' (on 24 June).

Latest revision as of 09:12, 11 June 2024


Higher Invariants Oberseminar (HIOB)   (Summer Semester 2024)
Gromov-Hausdorff convergence and metric geometry

HIOB-Organizers:
Jonathan Glöckle, Julian Seipel, Matthias Uschold

Time and place:
The HIOB will take place in the SFB Seminar Room every Monday at 12.15-13.45.

Zoom Details:
Meeting ID: 689 8268 6289

Schedule

The detailed program is here: (pdf).

Date   Room   Speaker   Topic
1 15 April M 311 Andrea Panontin Hausdorff and Gromov-Hausdorff distance
2 22 April M 311 Lukas Krinner Gromov-Hausdorff convergence
3 29 April M 311 Debam Biswas Universal spaces
4 6 May M 311 Niklas Kipp Alexandrov geometry I
- 13 May No HIOB: Conference "From Analysis to Homotopy Theory"
- 20 May Holiday
5 27 May M 311 Johannes Gloßner Alexandrov geometry II
6 3 June M 311 Benjamin Dünzinger Pointed Gromov-Hausdorff convergence and C^k-convergence
7 10 June M 311 Raphael Schmidpeter Cheeger finiteness theorem
8 17 June M 311 Chiara Sabadin Introduction to geometric group theory
B 24 June PHY 5.1.01* Jonathan Glöckle Bonus talk: Applied topology in viral evolution
9 1 July M 311 Franziska Hofmann Gromov’s theorem on polynomial growth
10 8 July M 311 Matthias Uschold The Bestvina-Paulin method
D 15 July M 311 everyone Discussion for the next HIOB

* Change of rooms due to Summer School "Interactions between algebra, equivariance, and homotopy theory" (on 24 June).

Personal Tools
  • Log in

  • Wiki Tools
  • Page
  • Discussion
  • View source
  • History