University of Regensburg
Faculty of Mathematics

HomeAboutPeopleEventsResearchRTGGuest ProgrammeImpressum

From SFB1085 - Higher Invariants
Jump to navigationJump to search
(Created page with "We introduce a version of algebraic K-theory and related localising invariants for bornological algebras, using Efimov's recently introduced continuous K-theory. In the commut...")
 
(No difference)

Latest revision as of 23:06, 4 December 2024

We introduce a version of algebraic K-theory and related localising invariants for bornological algebras, using Efimov's recently introduced continuous K-theory. In the commutative setting, our invariant satisfies descent for various topologies that arise in analytic geometry (defined using bornological algebras). If time permits, I will also discuss a version of the Grothendieck-Riemann-Roch Theorem for analytic spaces.

Personal Tools
  • Log in

  • Wiki Tools
  • Page
  • Discussion
  • View source
  • History