Taut foliations and Dehn Surgery along positive braids

Siddhi Krishna (Georgia Tech/Columbia)

December 15, 2020

Suppose Y is a irreducible $\mathbb{Q}HS^3$. The following are equivalent:

• Y admits a taut foliation

"geomety"

• Y is a non-L-space "Floer Homology"

• $\pi_1(Y)$ is left orderable

"algebra"

Definition

A taut foliation is

• a decomposition of Y^3 into codim-1 submanifolds, called **leaves**, such that

• there exists a simple closed curve meeting each leaf transversely

Fibered 3-Manifolds

Start with

- F: a compact, connected, oriented surface
- $\varphi: F \to F$, a diffeomorphism

This determines:

Theorem (Thurston '86): Compact leaves of taut foliations minimize genus in their homology class.

Theorem (Gabai '87): The "Property R" Conjecture is true, i.e.

If $K \subset S^3$, and $S_0^3(K) \approx S^1 \times S^2$, then $K \approx U$.

L-Spaces

Definition

A closed, irreducible 3-manifold Y is an **L-space** if

$$rk(\widehat{HF}(Y;\mathbb{Z}/2\mathbb{Z})) = |H_1(Y;\mathbb{Z})| < \infty$$

<u>Remark</u>: $rk(\widehat{HF}(Y;\mathbb{Z}/2\mathbb{Z})) \ge |H_1(Y;\mathbb{Z})|$ holds for $\mathbb{Q}HS^3$

EX: Lens spaces \leq Elleptic Mflds

Left-Orderability

Definition

A non-trivial group G is **left–orderable** if there exists a total ordering ">" on G that is preserved by left-multiplication.

Non-Example: $\mathbb{Z}/p\mathbb{Z} = \langle x \mid x^p \rangle$ is not left-orderable.

The L-Space Conjecture Revisited

 $\frac{\text{The L-Space Conjecture:}}{\text{Suppose } Y \text{ is an irreducible } \mathbb{Q}HS^3.$ The following are equivalent:

- Y admits a taut foliation
- Y is a non-L-space
- $\pi_1(Y)$ is left orderable

"geometry" "Heegaard Floer homology" "algebra"

Poput: These manifolds are "big".

 $\frac{\text{Theorem (Ozsváth–Szabó; Bowden; Kazez–Roberts):}}{\text{If } Y \text{ admits a taut foliation, then } Y \text{ is a non–L–space.}}$

<u>Theorem:</u> The L-Space Conjecture is true for graph manifolds. <u>Proof:</u> Eisenbud, Hirsch, Neumann, Naimi, Calegari, Walker, Boyer, Gordon, Clay, Watson, Lisca, Stipsicz, J. & S. Rasmussen, Hanselman, and many more!

Focusing on Foliations

If Y is an irreducible $\mathbb{Q}HS^3$:

Definition

A non-trivial knot $K \subset S^3$ is an **L**-space knot if K there exists r > 0 such that $S_r^3(K)$ to an L-space.

Examples: Positive torus knots (Moser), Berge Knots

Suppose $K \subset S^3, K \not\approx U$. Then either: (1) K is not an L-space knot: $\longrightarrow m(K)$ is an L-space knot, or \longrightarrow For all $r \in \mathbb{Q}, S_r^3(K)$ is a non-L-space. (2) K is an L-space knot:

Theorem (Kronheimer-Mrowka-Ozsváth-Szabó; J+S Rasmussen):

$$S_r^3(K) = \begin{cases} \text{non-L-space} & r < 2g(K) - 1 \\ \text{L-space} & r \ge 2g(K) - 1 \end{cases}$$

Suppose $K \subset S^3, K \not\approx U$. Then either: (1) K is not an L-space knot: $\longrightarrow m(K)$ is an L-space knot, or $[\underbrace{ \mathsf{Ex}} : \mathsf{LHT}]$ \longrightarrow For all $r \in \mathbb{Q}, S^3_r(K)$ is a non-L-space. $[\underbrace{ \mathsf{Ex}} : 4]$ (2) K is an L-space knot: $= \sum_{r=1}^{r} \sum_{r=1}^{$

Theorem (Kronheimer-Mrowka-Ozsváth-Szabó; J+S Rasmussen):

$$S_r^3(K) = \begin{cases} \text{non-L-space} & r < 2g(K) - 1\\ \text{L-space} & r \ge 2g(K) - 1 \end{cases}$$

Suppose
$$K \subset S^3, K \not\approx U$$
. Then either:
(1) K is not an L-space knot:
 $\longrightarrow m(K)$ is an L-space knot, or $[Ex^{*}LHT]$
 \longrightarrow For all $r \in \mathbb{Q}, S^3_r(K)$ is a non-L-space. $[Ex^{*}]$
(2) K is an L-space knot:

Theorem (Kronheimer-Mrowka-Ozsváth-Szabó; J+S Rasmussen):

$$S_r^3(K) = \begin{cases} \text{non-L-space} & r < 2g(K) - 1 \\ \text{L-space} & r \ge 2g(K) - 1 \end{cases}$$

$$Points \text{ Up to the nglt Choice of K r} \\ m(K), \text{ then } \forall r < 2g(K) - 1, S_r^3(K) \text{ is a} \\ \text{Non-L-Space. LSC predicts inved ones have TFs.} \end{cases}$$

$$12/25 \quad \text{Siddhi Krishna} \quad \text{Taut Foliations and Positive Braids}$$

 $S_r^3(K)$ has a taut foliation if ...

Theorem (Roberts '00)

 $\ldots K$ is fibered, r < 1

Theorem (K. ²⁰)

 $\dots K$ is a "positive 3–braid closure" and r < 2g(K) - 1

Theorem (K.)

... K is a "positive n-braid closure" and $r < \lfloor \frac{4}{3}g(K) \rfloor$

These are the only examples in the literature producing taut foliations in $S^3_{\tau}(K), r < f(g(K)))$ for hyperbolic knots. $S_r^3(K)$ has a taut foliation if ...

Theorem (Roberts '00)

 $\dots K$ is fibered, r < 1

Theorem (K. 20)

... K is a "positive 3-braid closure" and r < 2g(K) - 1

Theorem (K.)

... K is a "positive n-braid closure" and $r < \lfloor \frac{4}{3}g(K) \rfloor$

These are the only examples in the literature producing taut foliations in $S_r^3(K), r < f(g(K)))$ for hyperbolic knots.

13/25

$S_r^3(K)$ has a taut foliation if ...

Theorem (Roberts '00)

 $\ldots K$ is fibered, r < 1

Theorem (K. 20)

... K is a "positive 3-braid closure" and r < 2g(K) - 1

Theorem (K.)

... K is a "positive n-braid closure" and $r < \lfloor \frac{4}{3}g(K) \rfloor$

These are the only examples in the literature producing taut foliations in $S_r^3(K), r < f(g(K)))$ for hyperbolic knots.

13/25

Application

Y is a non-L-space $\iff Y$ admits a taut foliation

holds for **every** non-L-space obtained by Dehn surgery along an infinite family of **hyperbolic** L-space knots.

14/25

Siddhi Krishna

Cor(K.)

 $K_{n,1}$ is braid positive $\iff K \approx U$

Siddhi Krishna

15/25

"Proof sketch": (=) V (\Rightarrow) By contrapositive. Suppose KCS^3 and $g(K) \ge 1$. Suppose $K_{n,1}$ is B.P. ∀v < [3g(Kn, 1)], Sr3(Kn, 1) has a T.F. In pauficular, S³_n (K_n,i) has a T.F. But S³_n (K_n,i) is reducible, hence can't have a T.F.

Cor(K.)

If $g(K) \ge 2$, then $K_{n,2}$ is never braid positive.

Q: If g(K)=1, when is Kp,q Braid positive? Q': If K is PHT, when is Kp,q Braid Pos? Challenges many inits IDOK Polentical for B.P., Pos, Almost Pos, Sap

For Y an irreducible $\mathbb{Q}HS^3$:

Questions: How do we (1) identify non-L-spaces? Dehn Sugery (2) build taut foliations in them? Brancheel Surfaces

17/25

Elements of the construction

• Branched surfaces

• Positive braids

• "Amplification Lemma"

Branched surfaces

Positive braids

Essence of the construction

• choose right co-orientations for the disks
$$*$$

Then for all
$$r < k$$
, $S_r^3(K)$ has a taut foliation.
BUZZUORDS: "Laminar branched SN_{face} " Tao
"stnk disk"
"half fack"

Amplification Lemma

Taut Foliations and Positive Braids

Siddhi Krishna

Amplification Lemma

Point? At most $\frac{1}{3}$ crossings are in Γ_c , $i \equiv 0 \mod 3$ ⇒ At least 275 crossings are Ti, i≠0 mod 3 =) At least $\frac{4}{3}g(k)$ is concentrated in these Hop VVC Hg(K), Sr(K) has a T.F.