39 Calculation of K-theory of crossed products via
homotopy theory

initiated by discussions with J. Kranz

- now joint project with S. Nishikawa
39.1 First reduction to finite groups

Problem:

- G a group (discrete for this talk)
- A a C*-algebra with G-action

- can form A x, G

Calculate K(A %, G) from K(A) with G-action.

Prototypical example:
-G=1
-a: K. (A) = K,.(A) action of the generator on K-theory groups

- Pimsner-Voiculescu sequence:

Ko(A) —=2 Ky(A) — Ko(A x Z)

T |

K1 (A x Z) «—— K1 (A) «——2— K (A)

- is in general not sufficient for calculation: extension problem

knowing G-action on spectrum suffices:

- have K(A) € Fun(BZ,Mod(KU))
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— Baum-Connes for Z holds:

— K(AXZ)~ colimpy K(A) (homotopy orbits)

- this is a homotopic theoretic description of spectrum K (A x Z)

— spectral sequence for groups leads again to Pimsner-Voiculescu

must ask question more precisely:

- in the present talk ask for calculation of the spectrum K (A x, G)

- calculation means: description (formula) in terms of homotopy theory

— 50 K(A %, G) ~ colimpg K(A) is elegible answer (not always true!)

— from such a formula to K,(A X, G): spectral sequences and other methods

— carry this out this is not easy in general

must also be more precise about the data we want to use:
with increasing complexity

- K.(A) € Fun(BG, Ab%")

- K(A) € Fun(BG,Mod(KU)) - here action by functoriality

- K(A) € Fun(GOrb,Mod(KU)) - (see below for construction)

kk®(A) € KK¢

- everything depends on kk®(A) - contains full information

KKG Da’UZ‘S;LUCCk F\lln(GOI'b, MOd<KU)>
K5 Fun (G, Orb, Mod(KU))
(
(

Ret™  Fun(BG, Mod(KU))
Fun(BG, Ab™®")

2]

2]

Davis-Liick construction (corrections by M. Joachim):
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- C[-] : GOrb — GC*Cat™
- S € GOrb ~» C[S] - linearization in GC*Cat™ ~» kk%(C[9]) € KK¢

- define K(A): GOrb 3 S +— KK%(C, A ® C[S]) € Mod(KU)

—values: K(A)(G/H) ~ K(Ax, H)

— K(A) contains full information: K(A)(G/G) ~ K(A %, G)

Baum-Connes proposes:

- K(A) is left Kan-extension of (A)|GFmOrb

- COlimGFinOrb (A) ~ K(A X G)

- if we accept Baum-Connes: must still calculate K (A)|G O
— Y Fin

— in particular crossed products for finite groups

— next section - further reduction to finite cyclic subgroups

— K(A) is left Kan-extension of K (A)

I |GCyCﬁFin0rb

39.2 Second reduction to cyclic groups

R(G) := KKY(C,C) € CAlg(Mod(KU)) representation ring of G
- KK¢ is enriched in Mod(R(G))
— K(A) € Fun(GOrb, Mod(R(G))

— get in particular K(A x H) € Mod(R(H)) for all H C G

from now on: G finite
- moR(G) - classical representation ring

-V := L*(G) 6 C - ortho-complement of constant functions with G-action
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- define € := A_1 (V) := SN (—1) AV in 7o (@)

GpypOrb - family of proper subgroups
- version of Atiyah-Segal
Theorem 39.1. The isotropy separation fibre sequence

colim K(A) - K(A X G) — Cofgrp(A)

GppOrb

18 equivalent to the localization sequence

SeK(AxG) = K(AxG) — K(AxG)[¢]
Lemma 39.2. If G is not cyclic, then £ = 0.
- hence Cofgrp(A) ~ 0 if G not cyclic

G again be general discrete:

Corollary 39.3. For discrete group G the functor (A)|G O 1s left Kan-extension of
—|GFin VT
K(A)

|GCyCﬁFinorb

with Baum-Connes: colimg, m.orb K(A) ~ K(A % G).

- it suffices to calculate crossed products for cyclic groups

39.3 Reduction to families of subgroups

G finite

- for family of subgroups F consider isotropy separation fibre sequence:

colim K (A) — K(A x G) — Cof%(A)

G Orb

have induction functors: Ind$ : KK# — KK

-I(F) C KK - localizing category generated by images of Ind$ for all members of F
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Proposition 39.4. If A € I(F), then Cof%(A) ~ 0.

Corollary 39.5. If A € I(F), then K(A) is left Kan-extension of K(A) and

— ‘G}_ﬁCycorb

colimg, ...orb K(A) = K(AxG).

discuss case F = {e}
- G Orb ~ BG

- K(A) .~ K(A) in Fun(BG, Mod(KT))

1G ey

Corollary 39.6. A in I({e}), then colimps K(A) ~ K(A x G)

- recovers Green-Julg K (Ind“(B) x G) ~ K(B)
- K(Ind(B)) ~ @ K(B)
—colimpe P, M ~ M

Proposition 39.7. A € I({e}) and |G| acts invertibly on A iff p acts invertibly on A.

- in this case even colimpg K, (A) ~ K,.(A x G)

switch from KK to E¢ (better behaved colimits)
- EY is (probably) not compactly generated

— this makes the following interesting

- consider any set of objects L C E

L= ﬂ ker(F)

FeFun®!i®(E Sp),F(L)=0

is (contains) closure of (L) under phantom retracts
— K : E — Sp is colimit preserving

I({e}) C Ind“(KK) - probably proper
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Corollary 39.8. If A is in Ind“(KK), then K(A) is left Kan-extension of K(A) and
colimpg K(A) ~ K(A x G).

Proposition 39.9. If the G-action on A has the Rokhlin property, then e“(A) € Ind%(KK).

(3((pgn)gec)nen With approximate properties: projections, decomposition of 1 in M (A),
equivariant, central)

more closure properties of L
Proposition 39.10. If A is approzimately unitarily equivalent to B with e(B) € L, then
e(A) € L.

-(f:A—= B, h:B— A, fh ~g, idp, hf ~q, ida)

- (~au: f ~au [+ A— B: 3(up), unitaries in B, u, fu; — f)

Proposition 39.11. If0 - A — B — C — 0 s a weakly quasi-diagonal extension and
e(B) € L, then e(A),e(C) € L.

(3(pn)nen of invariant projections, p,B C A, approximately central in B: [p,,b] — 0,
approximate unit for a: p,a — a)

39.4 p-order cyclic groups

G=0C,
- has only e as proper subgroup

- fibre sequence
c%lcim K(A) = K(AxC,) — K(AxC,)[¢

P

Lemma 39.12. 2 = p¢

hence completing at p kills third term

Corollary 39.13.

(colimK(A)), ~ K(A x Cy),

BC, p
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suffices to calculate p-torsion in K,(A x C))

- K(A) ~ 0 (non-equivariantly) implies colimpe, K(A) ~ 0 and hence K(A x C,) is
uniquely p-divisible (actually &-divisible)

- Iszumi: there are many examples of such A

Corollary 39.14. If K.(A) is finite p-torsion, then no completion necessary:

c%lcim K(A)~ K(AxC,)

calculation of homotopy is still complicated

example:

A= Ofncfl with cyclic permutation of tensor factors
- K(A) ~ (KU/p™)™ @& (SKU/p™)™, ng, ny explicitly known
—egforp=2n=1ny=n =1

Corollary 39.14 applies

. ®Cp \ ®Cp
c%lcp}m K(Opnfy) = K(Ou ) x Cy)

homotopy groups only known for p = 2,3 and all n: Izumi, Nishikawa

3 o[ zZ) 2" e/ x=0
K*(OéggrlNC?):{ / 0 / =1

(joint with Nishikawa:)

Z3n+12@Z3n—12 :O
K*(O%Cf’mc“g)%{(/ FEEET e

Method is not simply evaluate formula above!

- uses fine structure of tensor powers - filtrations
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