
39 Calculation of K-theory of crossed products via

homotopy theory

initiated by discussions with J. Kranz

- now joint project with S. Nishikawa

39.1 First reduction to finite groups

Problem:

- G a group (discrete for this talk)

- A a C
⇤-algebra with G-action

- can form Aor G

Calculate K(Aor G) from K(A) with G-action.

Prototypical example:

- G = Z

- ↵ : K⇤(A)! K⇤(A) action of the generator on K-theory groups

- Pimsner-Voiculescu sequence:

K0(A)
1�↵

// K0(A) // K0(Ao Z)

✏✏

K1(Ao Z)

OO

K1(A)oo K1(A)
1�↵
oo

- is in general not su�cient for calculation: extension problem

knowing G-action on spectrum su�ces:

- have K(A) 2 Fun(BZ,Mod(KU))

81



– Baum-Connes for Z holds:

– K(Ao Z) ' colimBZ K(A) (homotopy orbits)

- this is a homotopic theoretic description of spectrum K(Ao Z)

– spectral sequence for groups leads again to Pimsner-Voiculescu

must ask question more precisely:

- in the present talk ask for calculation of the spectrum K(Aor G)

- calculation means: description (formula) in terms of homotopy theory

– so K(Aor G) ' colimBG K(A) is elegible answer (not always true!)

– from such a formula to K⇤(Aor G): spectral sequences and other methods

— carry this out this is not easy in general

must also be more precise about the data we want to use:

with increasing complexity

- K⇤(A) 2 Fun(BG,AbZgr)

- K(A) 2 Fun(BG,Mod(KU)) - here action by functoriality

- K(A) 2 Fun(GOrb,Mod(KU)) - (see below for construction)

kkG(A) 2 KKG

- everything depends on kkG(A) - contains full information

KKG Davis�Lueck
! Fun(GOrb,Mod(KU))

ResFin
! Fun(GFinOrb,Mod(KU))

ResFin

! Fun(BG,Mod(KU))
⇡0
! Fun(BG,AbZgr)

Davis-Lück construction (corrections by M. Joachim):
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- C[�] : GOrb! GC
⇤Catnu

- S 2 GOrb ; C[S] - linearization in GC
⇤Catnu ; kkG(C[S]) 2 KKG

- define K(A): GOrb 3 S 7! KKG(C, A⌦ C[S]) 2Mod(KU)

– values: K(A)(G/H) ' K(Aor H)

– K(A) contains full information: K(A)(G/G) ' K(Aor G)

Baum-Connes proposes:

- K(A) is left Kan-extension of K(A)
|GFinOrb

– colimGFinOrb K(A) ' K(Aor G)

- if we accept Baum-Connes: must still calculate K(A)
|GFinOrb

– in particular crossed products for finite groups

– next section - further reduction to finite cyclic subgroups

– K(A) is left Kan-extension of K(A)
|GCyc\FinOrb

39.2 Second reduction to cyclic groups

R(G) := KKG(C,C) 2 CAlg(Mod(KU)) representation ring of G

- KKG is enriched in Mod(R(G))

– K(A) 2 Fun(GOrb,Mod(R(G))

– get in particular K(AoH) 2Mod(R(H)) for all H ✓ G

from now on: G finite

- ⇡0R(G) - classical representation ring

- V := L
2(G) C - ortho-complement of constant functions with G-action
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- define ⇠ := ⇤�1(V ) :=
P|G|�1

i=0 (�1)i⇤i
V in ⇡0(G)

GPrpOrb - family of proper subgroups

- version of Atiyah-Segal

Theorem 39.1. The isotropy separation fibre sequence

colim
GPrpOrb

K(A)! K(AoG)! CofGPrp(A)

is equivalent to the localization sequence

S⇠K(AoG)! K(AoG)! K(AoG)[⇠�1]

Lemma 39.2. If G is not cyclic, then ⇠ = 0.

- hence CofGPrp(A) ' 0 if G not cyclic

G again be general discrete:

Corollary 39.3. For discrete group G the functor K(A)
|GFinOrb

is left Kan-extension of

K(A)
|GCyc\FinOrb

.

with Baum-Connes: colimGCyc\FinOrb K(A) ' K(AoG).

- it su�ces to calculate crossed products for cyclic groups

39.3 Reduction to families of subgroups

G finite

- for family of subgroups F consider isotropy separation fibre sequence:

colim
GFOrb

K(A)! K(AoG)! CofGF(A)

have induction functors: IndG
H
: KKH

! KKG

- I(F) ✓ KKG - localizing category generated by images of IndG
H

for all members of F
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Proposition 39.4. If A 2 I(F), then CofGF(A) ' 0.

Corollary 39.5. If A 2 I(F), then K(A) is left Kan-extension of K(A)
|GF\CycOrb

and

colimGF\CycOrb K(A) = K(AoG).

discuss case F = {e}

- G{e}Orb ' BG

- K(A)
|G{e}

' K(A) in Fun(BG,Mod(KU))

Corollary 39.6. A in I({e}), then colimBG K(A) ' K(AoG)

- recovers Green-Julg K(IndG(B)oG) ' K(B)

– K(IndG(B)) '
L

G
K(B)

– colimBG

L
G
M 'M

Proposition 39.7. A 2 I({e}) and |G| acts invertibly on A i↵ ⇢ acts invertibly on A.

- in this case even colimBG K⇤(A) ' K⇤(AoG)

switch from KKG to EG (better behaved colimits)

- EG is (probably) not compactly generated

– this makes the following interesting

- consider any set of objects L ✓ EG

L̄ :=
\

F2Funcolim(E,Sp),F (L)=0

ker(F )

is (contains) closure of hLi under phantom retracts

– K : E! Sp is colimit preserving

I({e}) ✓ Ind
G(KK) - probably proper
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Corollary 39.8. If A is in Ind
G(KK), then K(A) is left Kan-extension of K(A) and

colimBG K(A) ' K(AoG).

Proposition 39.9. If the G-action on A has the Rokhlin property, then eG(A) 2 Ind
G(KK).

(9((pg,n)g2G)n2N with approximate properties: projections, decomposition of 1 in M(A),
equivariant, central)

more closure properties of L

Proposition 39.10. If A is approximately unitarily equivalent to B with e(B) 2 L, then

e(A) 2 L.

- (f : A! B, h : B ! A, fh ⇠au idB, hf ⇠au idA)

- (⇠au: f ⇠au f
0 : A! B: 9(un)n unitaries in B, unfu

⇤
n
! f

0)

Proposition 39.11. If 0! A! B ! C ! 0 is a weakly quasi-diagonal extension and

e(B) 2 L, then e(A), e(C) 2 L.

(9(pn)n2N of invariant projections, pnB ✓ A, approximately central in B: [pn, b] ! 0,
approximate unit for a: pna! a)

39.4 p-order cyclic groups

G = Cp

- has only e as proper subgroup

- fibre sequence
colim
BCp

K(A)! K(Ao Cp)! K(Ao Cp)[⇠
�1]

Lemma 39.12. ⇠2 = p⇠

hence completing at p kills third term

Corollary 39.13.
(colim

BCp

K(A))b
p
' K(Ao Cp)

b
p
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su�ces to calculate p-torsion in K⇤(Ao Cp)

- K(A) ' 0 (non-equivariantly) implies colimBCp
K(A) ' 0 and hence K(A o Cp) is

uniquely p-divisible (actually ⇠-divisible)

- Iszumi: there are many examples of such A

Corollary 39.14. If K⇤(A) is finite p-torsion, then no completion necessary:

colim
BCp

K(A) ' K(Ao Cp)

calculation of homotopy is still complicated

example:

A = O
⌦Cp

pn+1 with cyclic permutation of tensor factors

- K(A) ' (KU/p
n)n0 � (⌃KU/p

n)n1 , n0, n1 explicitly known

– e.g for p = 2, n = 1: n0 = n1 = 1

Corollary 39.14 applies

colim
BCp

K(O⌦Cp

pn+1) ' K(O⌦Cp

pn+1 o Cp)

homotopy groups only known for p = 2, 3 and all n: Izumi, Nishikawa

K⇤(O
⌦C2
2n+1 o C2) ⇠=

⇢
Z/2n+1

� Z/2n�1
⇤ = 0

0 ⇤ = 1

(joint with Nishikawa:)

K⇤(O
⌦C3
3n+1 o C3) ⇠=

⇢
(Z/3n+1)2 � (Z/3n�1)2 ⇤ = 0

0 ⇤ = 1

Method is not simply evaluate formula above!

- uses fine structure of tensor powers - filtrations
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