Instanton Fleer homology and the depth of taut foliations.
May 26 th.
Defy (Balanced sutured manuf (d).
A pair (M, γ) is called a balanced sutured $m f e l$.

- M is opt, oriented 3 -mfd. $\partial M \neq \phi$. $\gamma \subseteq \partial M$ oriented dosed 1 -submit.

$$
A(\gamma)=[-11] \times \gamma \leq \partial M . \quad R(\gamma)=\partial M \backslash A(\gamma) .
$$

(1). $2 M, R(\gamma)$ have no closed component.
(2). The orientation of γ induces an orientation on $R(\gamma)$.
$R_{+}(\gamma)=$ part of $R(\gamma)$ two orientations (from γ, M) coincide

$$
R_{-}(\gamma)=R(\gamma) \backslash R_{+}(\gamma) .
$$

E. G
(3). $x\left(R_{+}(\gamma)\right)=x(R-(\gamma))$.

B^{3}
Defy (Thunston nom). A prop sly imbedded surface $(S, \partial S) \subseteq(N 1 . \partial M)$.

$$
x(S)= \begin{cases}\max \{-x(S), 0\}, & S \text { is connected. } \\ x\left(S_{1}\right)+\cdots+x\left(S_{n}\right) & S=S_{1} \cup \cdots \cup S_{n}\end{cases}
$$

connected component.

Defy. A balanced sutured mfd is called tout if

- M is irreducible.
- $R_{土}(\gamma)$ are both incompressible-
- $R_{t}(\gamma)$ minimizes the Thurston norms of their homolog classes.

Sutured manifold de compositions.
$(S, \partial S) \leq(\mathcal{M}, \partial M) . \quad S$ is rented

solid torus.

Thu (Gabai, 1983).
Suppose (M, γ) taut balanced sutured manoffld.
Then then is a finite sequence of decompositions:

$$
(N \mid, \gamma) \xrightarrow{S_{1}}(\lambda\left(\Lambda_{1}, \gamma_{1}\right) \sim \overbrace{n}^{S_{n}}\left(M_{n}, \gamma_{n}\right) .
$$

S. that:
(1) Each $\left(M_{i}, \gamma_{i}\right)$ is taut.
(2). $\left.\left(M_{n}, \partial_{n}\right)=\left([-1,1] \times F, \xi_{0}\right\}_{x} \partial F\right)$. (product sutured manifold. F : oriented copt surface, with no closed component.

Defy. The sequence.

$$
(N 1, \gamma) \xrightarrow{S_{1}}\left(N\left(1, \gamma_{1}\right) \leadsto \cdots \xrightarrow{S_{n}}\left(M_{n}, \gamma_{n}\right) .\right.
$$

is called a sutured mfd hierarchy.
$d(u 1, \gamma)=$ minimal possible n.
$d(M, \gamma)=$ depth of the balanced sutured info.
Q: How finite can $d(m, \gamma)$ be?
A: Juhász SFH (M, γ).
The (Juhász, 2010). If $H_{2}(\mu, \mathbb{Z})=0 \quad(111, \gamma)$ taut.

$$
r_{\mathbb{Z}} S F H(M, \gamma)<2^{k+1}
$$

Then $d((1, \gamma) \leqslant 2 k$.
The (Ghosh, $L, 2019$). If $H_{2}\left(M_{i} Z\right)=0 .(N, \gamma)$ taunt.

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{SHI}(M, \gamma)<2^{k+1}
$$

Then $d(M, \gamma) \leq 2 k$.
Foliations: (co-dim I on 3 -mfd).
Locally: $x-y_{1}-z$ plane. leaves looks like horizontal planes parametrized by 7 -axis.

EGg., co-din 1 an surface.

Quotient to annulus:

Defy. A foliation $F_{\text {on }}(M, \gamma)$ is called taut if.

- F is transverse to $A(\gamma)=[-1,1] \times \gamma \leqslant \partial M$.
- O - is tangent to $R(\gamma)$,
- $F_{A(r) .}$ has no Reeb components.
- Each leaf of G-intersects a transverse curve or properly embedded

Egg. Say $\left(M_{1}, \gamma\right)=([-1,1] \times F,\{0\} \times \partial F\}$. Thenar there is a product foliation. leaves are $\xi+J \times F \quad t \in[-1]]$.

Defy - Depth of the foliation: defined in ductive ly.

- Comport leaves will have depth 0 .
- If L is a leaf. I contains: leaves of depth 0 .

Then say depth of L is 1 .
Depth of a foliation = maximal depth of all its leaves.
Thus (Gabai). If (M, γ) is taunt then it admits a taut foliation of finite depth.
d: How finite it could be?

Conj. (Juhász). $H_{2}(M)=0 . \quad{ }_{\mathbb{Z}}{ }_{\mathbb{Z}} S F H(M, \gamma)<2^{k+1} \quad(M, \gamma)$ taunt.
Then (M, γ) admits a taunt foliation of depth $\leq 2 k$.
Thus $(L) . H_{2}(M)=0 . \quad \operatorname{dim}_{C} S H I(M, \gamma)<2^{k+1} . \quad(M, \gamma)$ tart. also arks

Then (N, γ) admits a taut foliation of depth 2^{k+6}.

Cor. $K \leq S^{3}$ is a knot. Consider irreducible $S U(2)$ reps.

$$
\begin{gathered}
\left.\rho: \pi_{1}\left(S^{3} \backslash k\right)-\right\} S U(2) \\
\rho(\text { meridian })=\vec{i} \in S U(2)
\end{gathered}
$$

Suppose those homomorphisms are all non-degenerate and
$n(k)=$ number of conjugacy classes of ruck homomorphism

$$
n(k)<2^{k+1}
$$

Then $S^{3}(k)$ admits a taut foliation of depth $\leq 2^{k+6}$. vtransrevse to the boundary.

Conj (Krowheiner. Mrowka 2010). depth $\leq 2 k$.

Sutured instanton Flower homology.
$(M, \gamma) \sim \operatorname{SHI}(M, \gamma)$. finite dim complex veetw space. balanced suture mfd.

Thus (Baldusin-Sinck). Well defined up to multiplication by an element in \mathbb{C}^{*}.

This CGhoch. L, 2019). $H_{2}(M)=0(M, \gamma \mid$ taunt $\operatorname{dim}_{C} \operatorname{SH} I(M, \gamma)<2^{K+1}$.
Then $d(M, \gamma) \leq 2 k$.
Idea: Do decomposition in k stage. each stage 2 decompositions

$$
\operatorname{dim}_{\mathrm{C}} \mathrm{SHI}^{(M, \gamma) \text { reduced }} \text { my half. }
$$

In each step:
Defy, product annulus: $(A, \partial A) \leq(M, R(\gamma))$.

$$
\partial A \cap R_{t}(\gamma)=\phi . \quad \partial A \cap R_{-}(\gamma)=\phi .
$$

Trivial product annulus:

trivial product annulus.
In each stage: $\quad \operatorname{din}\left(M_{1} Y_{1}\right) \leq \underline{\operatorname{dim}\left(M_{1} Y_{1}\right) .} \quad \sin , \quad \sin \left(M_{2}, \gamma_{v}\right) \leq \frac{1}{2} \operatorname{dim} S H I\left(M_{1}, Y_{1}\right)$.

$\operatorname{Prop}(G a b a i) .-(M, \gamma) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}\right) \quad(M, \gamma),\left(M^{\prime}, \gamma^{\prime}\right)$ taunt.
S is well-groomed. F^{\prime} is a taut filiation on $\left(N^{\prime}, \gamma^{\prime}\right)$, of depth k.
Then (M, \forall) admist a tail foliation of depth
Lemma: The decomposition aling each product annulus can be divides into a sequence of well-groomed decompositions, with to Cal number $\leq C_{1}$. cmstant.

Remaining: to hounds the number of product annulus.
Observation: \# product annulus $\leq \#$ component of the suture γ_{1}
Lemma. (Gosh, L, 2019).
\# component of suture on $\gamma_{1} \leqslant C^{\prime} \cdot \operatorname{dim} \operatorname{SHI}\left(M_{1}, r_{1}\right)$.

