The diffeomorphism group of a 4-manifold

Daniel Ruberman (joint with Dave Auckly)

Regensburg low-dimensional geometry and topology seminar
January 26, 2021

Background

Basic object: X a smooth oriented manifold, $\operatorname{Diff}(X)$ its group of orientation-preserving diffeomorphisms.
$\operatorname{Diff}(X)$ is large (infinite dimensional) and complicated.
Study its algebraic topology. Simplest: set of path components.
Definition. Diffeomorphisms f_{0} and f_{1} are isotopic $\left(f_{0} \sim f_{1}\right)$ if they are connected by a path of diffeomorphisms.

Isotopy classes are a group $\pi_{0}(\operatorname{Diff}(X))$.
Similarly: topological isotopy $\left(f_{0} \sim_{\text {top }} f_{1}\right)$ of homeomorphisms.

Background

Comparison: Natural map $\operatorname{Diff}(X) \rightarrow$ Homeo (X) induces

$$
\pi_{0}(\operatorname{Diff}(X)) \rightarrow \pi_{0}(\operatorname{Homeo}(X))
$$

Is it injective? Surjective? What about higher homotopy groups?
Classic result: (Milnor 1958). Exotic 7-sphere; gives diffeomorphism $f: S^{6} \rightarrow S^{6}$ topologically isotopic to $\mathbf{1}_{S^{6}}$ but not smoothly isotopic to $\mathbf{1}_{S^{6}}$.
From now on, concentrate on dimension four.
Will find new phenomena compared with higher dimensions.

Isotopy and TOP isotopy

Topological isotopy is well-understood in dimension 4 when $\pi_{1}(X)=\{1\}:$

The smooth case is much more complicated.
Theorem 1. (R. 1998) There are 4-manifolds Z_{r} for which

$$
\operatorname{ker}\left[\pi_{0}\left(\operatorname{Diff}\left(Z_{r}\right)\right) \rightarrow \pi_{0}\left(\operatorname{Homeo}\left(Z_{r}\right)\right)\right]
$$

contains a \mathbb{Z}^{r} summand.

Stabilization

Theorem 1 depends on a stabilization property of 4-manifolds:
There are non-diffeomorphic 4-manifolds X_{1} and X_{2} such that

$$
X_{1} \# S^{2} \times S^{2} \cong X_{2} \# S^{2} \times S^{2}
$$

Auckly (1998) gave an explicit infinite family of manifolds $\left\{X_{k}\right\}$ with this property.

Idea: More stabilizations \Rightarrow elements in higher homotopy groups.
Theorem 2 (Auckly-R. 2020) There are 4-manifolds $Z_{k, r}$ for which

$$
\operatorname{ker}\left[\pi_{k}\left(\operatorname{Diff}\left(Z_{k, r}\right)\right) \rightarrow \pi_{k}\left(\operatorname{Homeo}\left(Z_{k, r}\right)\right)\right]
$$

contains a \mathbb{Z}^{r} summand.

Ordinary gauge theory

Brief review of Donaldson theory: Degree 0 invariant.
Suppose X has $b_{+}^{2}(X)$ odd and >1, and $P \rightarrow X$ is an $\mathrm{SO}(3)$ bundle with

$$
d(P)=2 p_{1}(P)-3\left(b_{+}^{2}(X)+1\right)=0
$$

For generic choice of Riemannian metric g on X, the $A S D$ moduli space

$$
\mathcal{M}(P ; g)=\left\{\text { Connections } A \text { on } P \text { with } F_{A}^{+}=0\right\} / \operatorname{Aut}(P)
$$

is a smooth compact, oriented 0-manifold.
Definition: $D(X ; P)=\# \mathcal{M}(P ; g)$; it's a diffeomorphism invariant.

Ordinary gauge theory

Analogy 1: Degree 0 invariant is like an intersection number-it counts (with signs) solutions to an equation.

- Expected dimension of intersection (like $d(P)$) is 0 .
- Count with signs doesn't change under deformation.
- More accurately: Count of solutions to (nonlinear) elliptic equation with index 0 ; the signed count doesn't change under metric deformation.

Invariants of families

We detect interesting maps of S^{k} to $\operatorname{Diff}(X)$ using parameterized (or family) gauge theory.
Analogy 2: A family invariant is like a linking number.
Imagine manifolds A and C in \mathbb{R}^{m} with $\operatorname{dim}(A)+\operatorname{dim}(C)<m$.

Expected dimension of intersection $(\operatorname{dim}(A)+\operatorname{dim}(C))-m<0$ so expect them to be disjoint.

Invariants of families

Let C move in a $m-(\operatorname{dim}(A)+\operatorname{dim}(C))$ parameter family $\left\{C_{t}\right\}$ and count the intersections.

Signed count is independent of how you get from C_{0} to C_{3}.

Gauge theory for families

Suppose that $P \rightarrow X$ is such that $d(P)=-n<0$; then $\mathcal{M}(P, g)$ is empty for generic g.

We get an invariant from family of manifolds X_{b} and Riemannian metrics g_{b} for $b \in B$, where $\operatorname{dim}(B)=n$.
Definition: For an $\mathrm{SO}(3)$ bundle $\mathcal{P} \rightarrow B \times X$ define the parameterized moduli space

$$
\mathcal{M}(\mathcal{P},\{g\})=\bigcup_{b \in B}\{b\} \times \mathcal{M}\left(P_{b}, g_{b}\right)
$$

Then generically $\mathcal{M}(\mathcal{P},\{g\})$ is 0-dimensional and we can again count points with sign.

Gauge theory for families

Idea goes back to Donaldson (1989); developed by R. (1998), Li-Liu (2001) for Seiberg-Witten equations
Recent work: Baraglia, Konno, Kronheimer-Mrowka, J. Lin ...
Resulting (signed) count is denoted $D\left(\mathcal{P},\left\{g_{b}\right\}\right)$.
If $b_{+}^{2}(X)>\operatorname{dim}(B)+1$ then it's independent of $\left\{g_{b}\right\}$ and is denoted $D(\mathcal{P})$.
These results use the fact that $\mathcal{M e t}(X)$, the space of Riemannian metrics, is contractible.

Families of diffeomorphisms

Suppose $\alpha: S^{k} \rightarrow \operatorname{Diff}(X)$ and that g is a metric on X. Then α defines a map $S^{k} \rightarrow \mathcal{M e t}(X)$ by $g \rightarrow \alpha^{*} g$.
This extends to a map $A: B^{k+1} \rightarrow \operatorname{Met}(X)$ that gives a family $\left\{A(z) \mid z \in B^{k+1}\right\}$ of metrics.
Definition: Let $P \rightarrow X$ be an $\mathrm{SO}(3)$ bundle with $d(P)=-(k+1)$. The count of points in the parameterized moduli space

$$
\bigcup_{z \in B^{k+1}} \mathcal{M}(P, A(z))
$$

defines an integer $D^{P}(\alpha)$.

Properties of $D^{P}(\alpha)$

Proposition: Suppose $b_{+}^{2}(X)>k+2$. Then
(1) $D^{P}(\alpha)$ is independent of initial metric g and extension A.
(2) $D^{P}(\alpha)$ depends only on the homotopy class of $\alpha \in \pi_{k}(\operatorname{Diff}(X))$.
(3) $D^{P}(\alpha)$ is a homomorphism $\pi_{k}(\operatorname{Diff}(X)) \rightarrow \mathbb{Z}$.

In proving Theorem 2, we vary P to get a homomorphism $\pi_{k}(\operatorname{Diff}(X)) \rightarrow \mathbb{Z}^{r}$.
For today: just one P so we write $D(\alpha)$.
Let's find some interesting families of diffeomorphisms.

Spheres and diffeomorphisms

Heart of the construction: complex conjugation $C: \mathbb{C} P^{2} \rightarrow \mathbb{C} P^{2}$.
A sphere $S \subset M^{4}$ with $S \cdot S= \pm 1$ gives a decomposition

$$
M=M^{\prime} \# \pm \mathbb{C} P^{2} \text { and diffeomorphism } \rho^{S}: M \rightarrow M
$$

defined by $\rho^{S}=\mathbf{1}_{M^{\prime}} \# C$.
The pair (M, S) determines M^{\prime} (blowing down: $M^{\prime}=M / S$).
Idea: ρ^{S} also remembers $M^{\prime}: D\left(\rho^{S}\right)$ determines $D\left(M^{\prime}\right)$.

Stabilizing manifolds

Fact: There are manifolds X_{j} with $D\left(X_{j}\right) \neq D\left(X_{k}\right)$ for $j \neq k$ but

$$
X_{j} \# \mathbb{C} P^{2} \cong X_{k} \# \mathbb{C} P^{2}
$$

Sum with $\mathbb{C} P^{2}$ or $S^{2} \times S^{2}$ is a stabilization.
Now $X_{j} \# \mathbb{C} P^{2}$ contains a sphere S_{j} with $S_{j} \cdot S_{j}=1$; can assume $S_{j} \simeq S_{k}$.
The $\rho^{S_{i}}$ are interesting; we need something a bit more elaborate. Define:

$$
Z=X_{j} \# \underbrace{\mathbb{C} P^{2} \#-\mathbb{C} P^{2} \#-\mathbb{C} P^{2}}_{N}
$$

The two copies of $-\mathbb{C} P^{2}$ contain spheres E_{1}, E_{2} with self-intersection -1 .

Stabilizing manifolds

Note $\left(S+E_{1} \pm E_{2}\right)^{2}=-1$ so we get a diffeomorphism on N

$$
f^{N}=\rho^{S+E_{1}+E_{2}} \circ \rho^{S+E_{1}-E_{2}}
$$

Each decomposition $Z=X_{j} \# N$ gives a diffeomorphism $\alpha_{j}=\mathbf{1}_{X_{j}} \# f^{N}$.

Lemma. For all j and $k, \alpha_{j} \simeq \alpha_{k}$ (hence they are top isotopic).
Theorem: (R. 1998) $D\left(\alpha_{j}\right)=4 D\left(X_{j}\right)$. So if $j \neq k$,

$$
\alpha_{j} \circ \alpha_{k}^{-1} \in \operatorname{ker}\left[\pi_{0}(\operatorname{Diff}(Z)) \rightarrow \pi_{0}(\operatorname{Homeo}(Z))\right]
$$

Stabilizing spheres and diffeomorphisms

In 1998, Dave and I made a guess: α_{j} and α_{k} are isotopic after another stabilization. It took a while

Theorem: (Auckly-Kim-Melvin-R. 2015) The spheres S_{j} and S_{k} are isotopic in $Z \# \mathbb{C} P^{2}$ (and in $Z \# S^{2} \times S^{2}$ or even $Z \# N$). Hence

$$
\alpha_{j} \# \mathbf{1}_{S^{2} \times S^{2}} \sim \alpha_{k} \# \mathbf{1}_{S^{2} \times S^{2}}
$$

Remark: This is a general phenomenon (AKMR+Schwartz 2019). Executive summary of the rest of the talk: The stable isotopy from the above theorem gives rise to a \mathbb{Z} subgroup of

$$
\operatorname{ker}\left[\pi_{1}(\operatorname{Diff}(Z \# N)) \rightarrow \pi_{1}(\operatorname{Homeo}(Z \# N))\right]
$$

Iterating this process gives higher homotopy groups.

From isotopy to loops

Fix $j \neq k$ and write $\alpha=\alpha_{j} \circ \alpha_{k}^{-1}$, and let F_{t} be an isotopy with

$$
F_{0}=\alpha \# \mathbf{1}_{N} \text { and } F_{1}=\mathbf{1}_{Z \# N}
$$

The isotopy F_{t} gives a loop β of diffeomorphisms on $Z \# N$:

$$
\beta_{t}=F_{t} \circ\left(\alpha \# \mathbf{1}_{N}\right) \circ F_{t}^{-1} \circ\left(\alpha \# \mathbf{1}_{N}\right)^{-1}
$$

Theorem: (Auckly-R. 2019) The loop β satisfies
(1) $\beta \in \operatorname{ker}\left[\pi_{1}(\operatorname{Diff}(Z \# N)) \rightarrow \pi_{1}(\operatorname{Homeo}(Z \# N))\right]$
(2) $D(\beta)=4 D(\alpha)=16\left(D\left(X_{j}\right)-D\left(X_{k}\right)\right)$.

Hence β generates an infinite cyclic subgroup of that kernel.
Part 1 is relatively easy, using a topological isotopy of α to the identity.
Part 2 is a generalization of Donaldson's connected sum theorem.

Higher homotopy groups

To find elements in $\operatorname{ker}\left[\pi_{k}(\right.$ Diff $) \rightarrow \pi_{k}$ (Homeo) $]$ we iterate this process.

Connect sum again with N; then β becomes null homotopic. Use a commutator construction as above to turn this 2-parameter family of diffeomorphisms into a map of a sphere to the diffeomorphism group.

Proof of topological triviality and calculation of D invariants are similar.

About interesting families

All happy families are alike; each unhappy family is unhappy in its own way.-Leo Tolstoy, Anna Karenina.

