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Background

Basic object: X a smooth oriented manifold, Diff(X ) its group of
orientation-preserving diffeomorphisms.

Diff(X ) is large (infinite dimensional) and complicated.

Study its algebraic topology. Simplest: set of path components.

Definition. Diffeomorphisms f0 and f1 are isotopic (f0 ∼ f1) if they
are connected by a path of diffeomorphisms.

Isotopy classes are a group π0(Diff(X )).

Similarly: topological isotopy (f0 ∼top f1) of homeomorphisms.



Background

Comparison: Natural map Diff(X )→ Homeo(X ) induces

π0(Diff(X ))→ π0(Homeo(X )).

Is it injective? Surjective? What about higher homotopy groups?

Classic result: (Milnor 1958). Exotic 7-sphere; gives
diffeomorphism f : S6 → S6 topologically isotopic to 1S6 but not
smoothly isotopic to 1S6 .

From now on, concentrate on dimension four.

Will find new phenomena compared with higher dimensions.



Isotopy and TOP isotopy

Topological isotopy is well-understood in dimension 4 when
π1(X ) = {1}:
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The smooth case is much more complicated.

Theorem 1. (R. 1998) There are 4-manifolds Zr for which

ker [π0(Diff(Zr ))→ π0(Homeo(Zr ))]

contains a Zr summand.



Stabilization

Theorem 1 depends on a stabilization property of 4-manifolds:

There are non-diffeomorphic 4-manifolds X1 and X2 such that

X1 # S2×S2 ∼= X2 # S2×S2.

Auckly (1998) gave an explicit infinite family of manifolds {Xk}
with this property.

Idea: More stabilizations ⇒ elements in higher homotopy groups.

Theorem 2 (Auckly-R. 2020) There are 4-manifolds Zk,r for which

ker [πk(Diff(Zk,r ))→ πk(Homeo(Zk,r ))]

contains a Zr summand.



Ordinary gauge theory

Brief review of Donaldson theory: Degree 0 invariant.

Suppose X has b2+(X ) odd and > 1, and P → X is an SO(3)
bundle with

d(P) = 2p1(P)− 3(b2+(X ) + 1) = 0.

For generic choice of Riemannian metric g on X , the ASD moduli
space

M(P; g) =
{

Connections A on P with F+
A = 0

}
/Aut(P)

is a smooth compact, oriented 0-manifold.

Definition: D(X ;P) = #M(P; g); it’s a diffeomorphism
invariant.



Ordinary gauge theory

Analogy 1: Degree 0 invariant is like an intersection number–it
counts (with signs) solutions to an equation.

+
perturbation +

−

+

Expected dimension of intersection (like d(P)) is 0.

Count with signs doesn’t change under deformation.

More accurately: Count of solutions to (nonlinear) elliptic
equation with index 0; the signed count doesn’t change under
metric deformation.



Invariants of families

We detect interesting maps of Sk to Diff(X ) using parameterized
(or family) gauge theory.

Analogy 2: A family invariant is like a linking number.

Imagine manifolds A and C in Rm with dim(A) + dim(C ) < m.

C

A

Expected dimension of intersection (dim(A) + dim(C ))−m < 0 so
expect them to be disjoint.



Invariants of families

Let C move in a m − (dim(A) + dim(C )) parameter family {Ct}
and count the intersections.

A

C0

C1

C2

C3

Signed count is independent of how you get from C0 to C3.



Gauge theory for families

Suppose that P → X is such that d(P) = −n < 0; then M(P, g)
is empty for generic g .

We get an invariant from family of manifolds Xb and Riemannian
metrics gb for b ∈ B, where dim(B) = n.

Definition: For an SO(3) bundle P → B × X define the
parameterized moduli space

M(P, {g}) =
⋃
b∈B
{b} ×M(Pb, gb).

Then generically M(P, {g}) is 0-dimensional and we can again
count points with sign.



Gauge theory for families

Idea goes back to Donaldson (1989); developed by R. (1998),
Li-Liu (2001) for Seiberg-Witten equations

Recent work: Baraglia, Konno, Kronheimer-Mrowka, J. Lin ...

Resulting (signed) count is denoted D(P, {gb}).

If b2+(X ) > dim(B) + 1 then it’s independent of {gb} and is
denoted D(P).

These results use the fact that Met(X ), the space of Riemannian
metrics, is contractible.



Families of diffeomorphisms

Suppose α : Sk → Diff(X ) and that g is a metric on X . Then α
defines a map Sk →Met(X ) by g → α∗g .

This extends to a map A : Bk+1 →Met(X ) that gives a family
{A(z) | z ∈ Bk+1} of metrics.

Definition: Let P → X be an SO(3) bundle with
d(P) = −(k + 1). The count of points in the parameterized
moduli space ⋃

z∈Bk+1

M(P,A(z))

defines an integer DP(α).



Properties of DP(α)

Proposition: Suppose b2+(X ) > k + 2. Then

1 DP(α) is independent of initial metric g and extension A.

2 DP(α) depends only on the homotopy class of
α ∈ πk(Diff(X )).

3 DP(α) is a homomorphism πk(Diff(X ))→ Z.

In proving Theorem 2, we vary P to get a homomorphism
πk(Diff(X ))→ Zr .

For today: just one P so we write D(α).

Let’s find some interesting families of diffeomorphisms.
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Spheres and diffeomorphisms

Heart of the construction: complex conjugation C : CP2 → CP2.

A sphere S ⊂ M4 with S · S = ±1 gives a decomposition

M = M ′ #±CP2 and diffeomorphism ρS : M → M

defined by ρS = 1M′ # C .

The pair (M, S) determines M ′ (blowing down: M ′ = M/S).

Idea: ρS also remembers M ′: D(ρS) determines D(M ′).



Stabilizing manifolds

Fact: There are manifolds Xj with D(Xj) 6= D(Xk) for j 6= k but

Xj # CP2 ∼= Xk # CP2.

Sum with CP2 or S2×S2 is a stabilization.

Now Xj # CP2 contains a sphere Sj with Sj · Sj = 1; can assume
Sj ' Sk .

The ρSi are interesting; we need something a bit more elaborate.

Define:
Z = Xj # CP2 #−CP2 #−CP2︸ ︷︷ ︸

N

The two copies of −CP2 contain spheres E1, E2 with
self-intersection −1.



Stabilizing manifolds

Note (S + E1 ± E2)2 = −1 so we get a diffeomorphism on N

f N = ρS+E1+E2 ◦ ρS+E1−E2

Each decomposition Z = Xj # N gives a diffeomorphism
αj = 1Xj

# f N .

Lemma. For all j and k, αj ' αk (hence they are top isotopic).

Theorem: (R. 1998) D(αj) = 4D(Xj). So if j 6= k,

αj ◦ α−1k ∈ ker [π0(Diff(Z ))→ π0(Homeo(Z ))] .



Stabilizing spheres and diffeomorphisms

In 1998, Dave and I made a guess: αj and αk are isotopic after
another stabilization. It took a while ....

Theorem: (Auckly-Kim-Melvin-R. 2015) The spheres Sj and Sk
are isotopic in Z #CP2 (and in Z #S2×S2 or even Z #N). Hence

αj # 1S2×S2 ∼ αk # 1S2×S2 .

Remark: This is a general phenomenon (AKMR+Schwartz 2019).

Executive summary of the rest of the talk: The stable isotopy
from the above theorem gives rise to a Z subgroup of

ker [π1(Diff(Z # N))→ π1(Homeo(Z # N))] .

Iterating this process gives higher homotopy groups.



From isotopy to loops

Fix j 6= k and write α = αj ◦ α−1k , and let Ft be an isotopy with

F0 = α # 1N and F1 = 1Z#N .

The isotopy Ft gives a loop β of diffeomorphisms on Z # N:

βt = Ft ◦ (α # 1N) ◦ F−1t ◦ (α # 1N)−1.

Theorem: (Auckly-R. 2019) The loop β satisfies

1 β ∈ ker [π1(Diff(Z # N))→ π1(Homeo(Z # N))]

2 D(β) = 4D(α) = 16(D(Xj)− D(Xk)).

Hence β generates an infinite cyclic subgroup of that kernel.

Part 1 is relatively easy, using a topological isotopy of α to the
identity.

Part 2 is a generalization of Donaldson’s connected sum theorem.



Higher homotopy groups

To find elements in ker [πk(Diff)→ πk(Homeo)] we iterate this
process.

Connect sum again with N; then β becomes null homotopic. Use a
commutator construction as above to turn this 2-parameter family
of diffeomorphisms into a map of a sphere to the diffeomorphism
group.

Proof of topological triviality and calculation of D invariants are
similar.



About interesting families

All happy families are alike; each unhappy family is unhappy in its
own way.—Leo Tolstoy, Anna Karenina.




