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Definition of C*-categories

Originally due to Ghez–Lima–Roberts (1985).

Definition
Let C be a Banach ∗-category, i.e. morphism spaces Hom(x , y)
are complex Banach spaces with norm ‖ − ‖x ,y s.t.

‖g ◦ f‖x ,y ≤ ‖g‖y ,z · ‖f‖x ,y for all morphisms f and g, and
the ∗-operation is by isometries.

C is a C*-category if additionally for all morphisms f : x → y
‖f ∗ ◦ f‖x ,x = ‖f‖2x ,y and
f ∗ ◦ f is a positive element of the C*-algebra Hom(x , x).

Remark: The last point is indeed necessary (Schick).
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Examples of C*-categories

1 Every C*-algebra is a C*-category with a single object.
2 Hilb(C) has as objects all (separable) Hilbert spaces and

morphisms the bounded linear operators.
3 Hilb(C) contains the wide sub-C*-category Hilbc(C), where

we consider only the compact linear operators.
(This is a non-unital C*-category.)

4 Generalizing the above, let A be a C*-algebra.
Hilb(A) has as objects the Hilbert A-modules and as mor-
phisms the bounded adjointable operators.
Considering only the compact operators, we get Hilbc(A).
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The category of C*-categories

Definition
A functor F : C→ D between C*-categories is a C*-functor if it is
C-linear and preserves the adjoint.

We will denote by C*-Cat the category whose objects are the
C*-categories and morphisms the C*-functors.

The inclusions Hilbc(A)→ Hilb(A) are examples of C*-functors,
i.e. morphisms in C*-Cat.

We also have a fully faithful functor C*-Alg→ C*-Cat.
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Why do we consider C*-categories?

We have the inclusion C*-Alg → C*-Cat and we would like to
extend K -theory (or even KK -theory) along it.

This is usually done to fix problems (like functoriality) that arise
from being forced to make choices in the constructions.
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Example I: Roe algebras

Let X be a (proper) metric space. Choose a (separable) Hilbert
space H and a suitable *-representation ρ : C0(X )→ B(H).

We define a C*-algebra C∗(X ,H, ρ) as a certain sub-C*-algebra
of B(H) — the Roe algebra — and K -theory of it should be the
coarse K -homology of X .

For functoriality, let a suitable map X → Y between the metric
spaces be given and fixed choices (H, ρ) for X and (H ′, ρ′) for
Y have been made. We choose a suitable isometry V : H → H ′

and conjugation by it gives a map between the Roe algebras of
(X ,H, ρ) and (Y ,H ′, ρ′).

So many choices ... fine on K -theory groups but not on spectra.
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Example I: Roe algebras – solution

To solve the problem, we consider all possible choices of such
pairs (H, ρ) at once.

We define a C*-category C∗(X ) whose objects are such pairs
and whose morphisms are the analogous ones as in the Roe
algebra – this is the Roe category of X .

For functoriality, if f : X → Y is any suitable map, we will get a
C*-functor C∗(X ) → C∗(Y ) by mapping (H, ρ) to (H, ρ ◦ f ∗) and
on morphisms as the “identity”.

The coarse K -homology of X is the K -theory of this C*-category.
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Example II: Functors on the orbit category
Davis–Lück: A functor E : Or(G) → Sp gives rise to an assem-
bly map. Here the orbit category Or(G) has as objects the ho-
mogeneous G-spaces G/H and as morphisms G-maps.

For the Baum–Connes assembly map we would like to assign:
To G/H the spectrum K (C∗r H).
To a morphism G/H → G/K , which is given by right mul-
tiplication rg : G/H → G/K , g′H 7→ g′gK provided g ∈ G
satisfies g−1HG ⊂ K , the by cg : H → K , h 7→ g−1hg in-
duced morphism on reduced group C∗-algebras.1

Problem: The choice of g ∈ G is not unique since for k ∈ K
we have rg = rgk . But cg and cgk differ by conjugation by k
which does not necessarily act trivially on K (C∗r K ).

1Ignoring the functoriality issues with the reduced group C∗-algebra.

8 / 16



C*-Categories
Extending KK-Theory

C*-Cat as a (2,1)-Category

Why C*-categories?
Issues arising from choices
The functor Af

Example II: Functors on the orbit category – solution

We define a functor Or(G)→ C*-Cat:
An object G/H is mapped to the C*-category with set of
objects G/H and the morphism space for g′H,g′′H ∈ G/H
is ”generated“ by elements l ∈ G with lg′H = g′′H.
A morphism rg : G/H → G/K , g′H 7→ g′gK is mapped to
the C*-functor which is the morphism itself on objects and
the ”identity“ on the generators l .

Now we can apply our extension of K -theory to C*-categories
and have our sought functor on the orbit category.

9 / 16



C*-Categories
Extending KK-Theory

C*-Cat as a (2,1)-Category

Why C*-categories?
Issues arising from choices
The functor Af

Extending K - and KK -theory to C*-categories

Let us now extend K -theory (and KK -theory) along the inclusion
C*-Alg→ C*-Cat. The idea explained now is due to M. Joachim.

This inclusion has a left adjoint Af : C*-Cat → C*-Alg and the
extension is then just the composition

C*-Cat Af
−→ C*-Alg→ KK

(resp. using the K -theory functor C*-Alg→ Sp).

The nature of this functor Af will be explained later.
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Introduction to unitary equivalences

In the above discussed two examples, the different choices that
we can make are related by conjugation by unitaries (or at least
isometries).

Therefore we don’t have any problems classically: Conjugations
by unitaries act trivially on the K -theory groups. But they usually
don’t act trivially on the spectra.

We will see now that the axioms for KK -theory alone suffice to
prove that it sends unitarily equivalent C*-functors to equivalent
morphisms.
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Definition of unitary equivalences

Definition
Let C,D be C*-categories and let F ,G : C→ D be C*-functors.

They are unitarily equivalent if there is a natural isomorphism
η : F → G acting unitarily, i.e. for a morphism ϕ ∈ HomC(c, c′)
the vertical maps in the following diagram are unitaries:

F (c)
F (ϕ)

//

ηc

��

F (c′)

ηc′

��

G(c)
G(ϕ)

// G(c′)

Using unitary equivalences, we can therefore turn C*-Cat natu-
rally into a (2,1)-category.
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Respecting unitary equivalences follows from axioms

Proposition
Let E : C*-Alg → S be a matrix-stable and homotopy invariant
functor, where S is an∞-category.

Then E ◦ Af : C*-Cat→ S sends unitarily equivalent C*-functors
to equivalent morphisms that coincide in the homotopy category.
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The functor Af made concrete

Definition
Let C be a C*-category.

We consider the *-algebra freely generated by all the morphisms
of C, and then form the quotient by an equivalence relation which
reflects the sum, composition and the *-operation present in C.
Completing this in the maximal C*-norm defines Af (C).

We will denote the generators of Af (C) by (ϕ), where ϕ is any
morphism in C.
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Proof of the proposition
Let F ,G : C→ D be unitarily equivalent C*-functors. We want to
show that (E ◦ Af )(F ) is equivalent to (E ◦ Af )(G).

Let η be the corresponding unitary equivalence with components
ηc : F (c)→ G(c) for objects c in C, and let (ϕ) be a generator of
Af (C) for ϕ : c → c′. The following is a homotopy in M2 ⊗ Af (D)
between diag(0, (F (ϕ))) and diag((G(ϕ)),0):(

(ηc′) 0
0 1

)
· ut ·

(
(F (ϕ)) 0

0 0

)
·
(
(η−1

c ) 0
0 1

)
· u−1

t ·
(

1 0
0 (ηc)

)
,

where ut :=

(
cos(π/2 · t) − sin(π/2 · t)
sin(π/2 · t) cos(π/2 · t)

)
.

Now apply these homotopies simultaneously to each generator
to get a homotopy from diag(Af (G),0) to diag(0,Af (F )).
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Thanks for your attention!
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