Morse-Bott theory on analytic spaces and applications to the topology of smooth 4-manifolds

Paul Feehan

Department of Mathematics Rutgers University, New Brunswick, New Jersey, U.S.A

Tuesday, January 19, 2021

Regensburg Low-Dimensional Geometry and Topology Seminar RUTGERS

Outline

- Introduction
- Prankel's Theorem for smooth almost Hermitian manifolds
- Virtual Morse–Bott index for Hamiltonians on analytic spaces
- 4 ASD connections, Seiberg–Witten and SO(3) monopoles
- 5 Virtual Morse–Bott theory, ASD connections, and BMY
- **6** Virtual Morse–Bott theory on moduli spaces of SO(3) monopoles

イロト 不得下 イヨト イヨト

- 34

2/72

- 7 Appendix on unstable manifolds and resolution of singularities
- Bibliography

Collaborators and references

This talk is based on joint work with **Tom Leness** in our paper [4]:

 Introduction to virtual Morse–Bott theory on analytic spaces, moduli spaces of SO(3) monopoles, and applications to four-manifolds (with T. Leness), arXiv:2010.15789.

Work in progress (a specialization of our program to Kähler surfaces, not discussed today) is joint with Leness and **Richard Wentworth**.

The *first part* of our talk will focus on the more expository Sections 1 through 5.

The second part of our talk will focus on the more technical Section 6.

Introduction

Introduction I

We shall describe a new approach to Morse-Bott theory, called *virtual Morse-Bott theory*, that applies to singular (real or complex) analytic spaces that arise in gauge theory, including moduli spaces of

- SO(3) monopoles over closed smooth four-manifolds of Seiberg–Witten simple type,
- Stable holomorphic pairs of bundles and sections over closed complex Kähler surfaces,
- Higgs pairs over closed Riemann surfaces.

The moduli spaces over Kähler surfaces or Riemann surfaces are *complex analytic spaces*, with Kähler metrics and Hamiltonian circle actions.

・ロット 全部 とう キャット

Introduction II

For a smooth four-manifold that is *almost Hermitian* (which includes four-manifolds of *Seiberg–Witten simple type*), where

- the almost complex structure is not necessarily integrable and
- the *fundamental two-form* defined by the almost complex structure and Riemannian metric is not necessarily closed,

one can still show that the moduli space of SO(3) monopoles is a *real analytic space* and (after some work) that it is *almost Hermitian* [5].

These moduli spaces carry a circle action compatible with the almost complex structure and Riemannian metric and a Hamiltonian function to which virtual Morse–Bott theory applies.

・ロト ・回ト ・ヨト ・ヨト

6/72

We shall outline how virtual Morse-Bott theory may help prove the

Introduction III

Conjecture 1.1 (Bogomolov–Miyaoka–Yau (BMY) inequality for four-manifolds with non-zero Seiberg–Witten invariants)

If X is a closed, oriented, smooth four-manifold with $b_1(X) = 0$, odd $b^+(X) \ge 3$, and Seiberg–Witten simple type with a non-zero Seiberg–Witten invariant, then

$$c_1(X)^2 \leq 9\chi_h(X).$$

Yau [31] proved (1) for a compact Kähler surface X with ample canonical bundle using his existence of a Kähler–Einstein metric whose Ricci curvature is a negative constant [32] and a Chern–Weil inequality [30].

Inequality (1) was proved by Miyaoka [21] using algebraic geometry.

7 / 72

Introduction IV

If X obeys the hypotheses of Conjecture 1.1, then it has an almost complex structure J [17] and in the inequality (1), which is equivalent to

 $c_1(X)^2 \leq 3c_2(X),$

the Chern classes are those of the complex vector bundle (TX, J).

Taubes [27, 28] showed that *symplectic four-manifolds* have Seiberg–Witten simple type and so they satisfy the hypotheses of Conjecture 1.1.

Frankel's Theorem for the Hamiltonian function for a circle action on a smooth almost Hermitian manifold

Frankel's Theorem for almost Hermitian manifolds I

The version of Frankel's Theorem [9, Section 3] that we prove and apply in [4] is a little more general because we allow for circle actions on closed, smooth manifolds (M, g, J) that are only assumed to be *almost Hermitian*, rather than (almost) Kähler:

- the almost complex structure J need not be integrable and
- the fundamental two-form $\omega = g(\cdot, J \cdot)$ defined by the compatible pair (g, J) is non-degenerate but not required to be closed.

Frankel assumed in [9, Section 3] that ω was closed (though he allowed J to be non-integrable [9, p. 1].

Recall that $J \in C^{\infty}(End_{\mathbb{R}}(TM))$ is an *almost complex structure* on M if

Frankel's Theorem for almost Hermitian manifolds II

and J is orthogonal with respect to or compatible with a Riemannian metric g on M if

$$g(JX,JY)=g(X,Y)$$

for all vector fields $X, Y \in C^{\infty}(TM)$.

Frankel's Theorem for almost Hermitian manifolds III

Theorem 1 (Frankel's Theorem for circle actions on almost Hermitian manifolds)

(Compare Frankel [9, Section 3].) Let (M, g, J) be a finite-dimensional, smooth, almost Hermitian manifold with fundamental two-form $\omega = g(\cdot, J \cdot)$. Assume that M has a smooth circle action $\rho : S^1 \times M \to M$ and let $\rho_* : S^1 \times TM \to TM$ denote the induced circle action on the tangent bundle TM given by $\rho_*(e^{i\theta})v = D_2\rho(e^{i\theta}, p)v$, for all $v \in T_pM$ and $e^{i\theta} \in S^1$. Assume that the circle action is orthogonal with respect to g and compatible with J in the sense that

$$\begin{split} g\left(\rho_*(e^{i\theta})v,\rho_*(e^{i\theta})w\right) &= g(v,w) \quad \text{and} \quad J\rho_*(e^{i\theta})v = \rho_*(e^{i\theta})Jv, \\ for \ all \ p \in M, \ v,w \in T_pM, \ and \ e^{i\theta} \in S^1. \end{split}$$

Assume further that the circle action is **Hamiltonian** in the sense that there exists a function $f \in C^{\infty}(M, \mathbb{R})$ such that $df = \iota_X \omega$, where $X \in C^{\infty}(TM)$ is the vector field generated by the circle action, so $X_p = D_1 \rho(1, p)$ for all $p \in M$ and

$$\iota_X \omega(Y) = \omega(X, Y) = g(X, JY), \quad \text{for all } Y \in C^\infty(TM).$$

Frankel's Theorem for almost Hermitian manifolds IV

Theorem 1 (Frankel's Theorem for circle actions on almost Hermitian manifolds)

If $p \in M$ is a critical point of the Hamiltonian function f (equivalently, a fixed point of the circle action), then

- the eigenvalues of the Hessian Hess_g f ∈ End(T_pM) of f are given by the weights of the circle action on T_pM,
- f is Morse–Bott at p in the sense that in a small enough open neighborhood of p, the critical set Crit f := {q ∈ M : df(q) = 0} is a smooth submanifold with tangent space T_p Crit f = Ker Hess_g f(p), and

イロト イポト イヨト イヨト

• each connected component of Crit f has even dimension and even codimension in M.

We prove Theorem 1 and further extensions in [4].

Frankel's Theorem for almost Hermitian manifolds V The gradient vector field $\operatorname{grad}_g f$ on M for a smooth function $f: M \to \mathbb{R}$ is defined by

$$g(\operatorname{\mathsf{grad}}_g f,Y) := df(Y), \quad \text{for all } Y \in C^\infty(TM).$$

If ∇^g is the Levi–Civita connection on *TM*, the *Hessian of f* is

$$\operatorname{Hess}_g f := \nabla^g \operatorname{grad}_g f \in C^{\infty}(\operatorname{End}(TM)).$$

Theorem 1 implies that the following are equal:

- Subspace T[−]_p M ⊂ T_pM on which Hess_g f(p) ∈ End(T_pM) is negative definite,
- Subspace of T_pM on which S^1 acts with *negative weight*.

Hence, the *(classical)* Morse–Bott index of f at a critical point p, by definition dim T_p^-M , equals the dimension of the subspace of T_pM on the critical point p, by which the circle acts with negative weight.

Virtual Morse–Bott index for the Hamiltonian function of a circle action on an analytic space

Virtual Morse-Bott index for analytic spaces I

Hitchin's results [12, Proposition 7.1 and Theorem 7.6] for the

- Critical submanifolds and Morse indices of a Hamiltonian function
- **②** Topology of moduli space of Higgs bundles over a Riemann surface

show that Frankel's Theorem 1 is remarkably powerful.

One goal of our article [4] is to show that Frankel's Theorem 1 has useful generalizations to analytic spaces that are *singular*.

Analytic spaces are locally isomorphic to analytic varieties in \mathbb{K}^n — zero sets of finitely many \mathbb{K} -analytic functions for $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

16 / 72

We first state the simpler of two results in virtual Morse-Bott theory.

Virtual Morse–Bott index for analytic spaces II

Theorem 2 (Virtual Morse–Bott index of a critical point of a real analytic function on a real analytic space)

Let X be a finite-dimensional real analytic manifold, $M \subset X$ be a real analytic subspace, $p \in M$ be a point, and $F : \mathscr{U} \to \mathbb{R}^n$ be an analytic local defining function for M on an open neighborhood \mathscr{U} of p in the sense that $M \cap \mathscr{U} = F^{-1}(0) \cap \mathscr{U}$. Let $T_pM = \text{Ker } dF(p)$ denote the Zariski tangent space to M at p. Let $f : X \to \mathbb{R}$ be an analytic function and assume that p is a Morse–Bott critical point of the restriction $f : M \to \mathbb{R}$ in the sense that

- $\mathscr{C} = \{q \in M \cap \mathscr{U} : \text{Ker } df(q) = T_q M\}$ is a real analytic submanifold of X, and
- $T_p \mathscr{C} = \text{Ker Hess } f(p).$

Let $\operatorname{Ker}^{\pm} dF(p) = T_p^{\pm} M \subset T_p M$ denote the maximal positive and negative real subspaces for $\operatorname{Hess} f(p) \in \operatorname{End}(T_p M)$. If the virtual Morse–Bott index

$$\lambda_p^-(f) := \dim \operatorname{Ker}^- dF(p) - \dim \operatorname{Coker} dF(p), \tag{2}$$

KUTGERS

17 / 72

is positive, then p is not a local minimum for $f : M \to \mathbb{R}$.

Virtual Morse-Bott index for analytic spaces III

The following gives a generalization of Theorem 1, specialization of Theorem 2, and refinement of the definition of virtual Morse–Bott index.

Theorem 3 (Virtual Morse–Bott index of a critical point of a Hamiltonian function for a circle action on a complex analytic space)

Let X be a complex, finite-dimensional, Kähler manifold with circle action that is compatible with the complex structure and induced Riemannian metric. Assume that the circle action is Hamiltonian with analytic Hamiltonian function $f: X \to \mathbb{R}$ such that $df = \iota_{\xi}\omega$, where ω is the Kähler form on X and ξ is the vector field on X generated by the circle action. Let $M \subset X$ be a closed, complex analytic subspace, $p \in M$ be a point, and $F: \mathscr{U} \to \mathbb{C}^n$ be an analytic, circle equivariant, local defining function for M on an open neighborhood $\mathscr{U} \subset X$ of p in the sense that $M \cap \mathscr{U} = F^{-1}(0) \cap \mathscr{U}$. Let

- $\mathbf{H}_p^2 \subset \mathbb{C}^n$ denote the orthogonal complement of $\operatorname{Ran} dF(p) \subset \mathbb{C}^n$,
- $\mathbf{H}_{p}^{1} = \text{Ker } dF(p) \subset T_{p}X$ denote the Zariski tangent space to M at p, and
- $M^{\operatorname{vir}} \subset X$ denote the complex, Kähler submanifold given by $F^{-1}(\mathbf{H}_p^2) \cap \mathscr{U}$ and observe that $T_p M^{\operatorname{vir}} = \mathbf{H}_p^1$.

18 / 72

nurgend

Virtual Morse–Bott index for analytic spaces IV

Theorem 3 (Virtual Morse–Bott index of a critical point of a Hamiltonian function for a circle action on a complex analytic space)

If p is a critical point of $f : M \to \mathbb{R}$ in the sense that $\text{Ker } df(p) = \mathbf{H}_{p}^{1}$, then p is a fixed point of the induced circle action on M^{vir} .

- Let S ⊂ M^{vir} be the connected component containing p of the complex analytic submanifold of M^{vir} given by the set of fixed points of the circle action on M^{vir} and assume that S ⊂ M.
- Let H^{1,−}_p ⊂ H¹_p and H^{2,−}_p ⊂ H²_p denote the subspaces on which the circle acts with negative weight.

If the virtual Morse-Bott index

$$\lambda_{p}^{-}(f) := \dim_{\mathbb{R}} \mathbf{H}_{p}^{1,-} - \dim_{\mathbb{R}} \mathbf{H}_{p}^{2,-}$$
(3)

19/72

is positive, then p is not a local minimum for $f : M \to \mathbb{R}$.

Virtual Morse-Bott index for analytic spaces V

To prove prove Theorems 2 and 3, we use the

- Embedded Resolution of Singularities Theorem for (real or complex) analytic spaces (see Hironaka [11]), and
- Generic perturbation and transversality arguments.

Extensions and generalizations of Theorem 3

As we show in [4, 5], Theorem 3 generalizes to the case where X is a **real** analytic, almost Hermitian manifold.

That statement and its proof are provided in [4, 5].

Theorem 3 suffices for applications to the moduli spaces considered in [4] and this talk and whose top strata of smooth points are known to be complex Kähler manifolds.

20/72

Moduli spaces of anti-self-dual connections, Seiberg–Witten monopoles, and SO(3) monopoles

ASD connections, Seiberg–Witten & SO(3) monopoles I

Four-manifold topology

For a closed topological four-manifold X, we define

$$c_1(X)^2 := 2e(X) + 3\sigma(X)$$
 and $\chi_h(X) := \frac{1}{4}(e(X) + \sigma(X)),$

where $e(X) = 2 - 2b_1(X) + b_2(X)$ and $\sigma(X) = b^+(X) - b^-(X)$ are the *Euler characteristic* and *signature* of X, respectively.

We call X standard if it is closed, connected, oriented, and smooth with odd $b^+(X) \ge 3$ and $b_1(X) = 0$.

If Q_X is the intersection form on $H_2(X; \mathbb{Z})$, then $b^{\pm}(X)$ are the dimensions of the maximal positive and negative subspaces of Q_X on $H_2(X; \mathbb{R})$.

ペロン イロン イラン イミン イミン ミ つくで 22/72

ASD connections, Seiberg–Witten & SO(3) monopoles II Seiberg–Witten monopoles

For a standard four-manifold X, its Seiberg-Witten invariants define

 $\mathrm{SW}_X : \mathrm{Spin}^c(X) \ni \mathfrak{s} \mapsto \mathrm{SW}_X(\mathfrak{s}) \in \mathbb{Z}.$

A spin^c structure $\mathfrak{s} = (\rho, W)$ is a pair of rank-2 Hermitian vector bundles W^{\pm} over X with $W = W^{+} \oplus W^{-}$ and a *Clifford multiplication map*, $\rho : T^{*}X \to \operatorname{Hom}_{\mathbb{C}}(W^{+}, W^{-})$.

The Seiberg–Witten moduli space M_{s} is the set of gauge-equivalence classes of solutions to the Seiberg–Witten U(1)-monopole equations and is an orientable, compact, finite-dimensional, smooth manifold [22, 23, 26].

A Seiberg–Witten invariant $SW_X(\mathfrak{s})$ is defined by counting signed points in $M_\mathfrak{s}$ when dim $M_\mathfrak{s} = 0$ or pairing a natural cohomology class with $[M_\mathfrak{s}]$ when dim $M_\mathfrak{s} > 0$.

ASD connections, Seiberg–Witten & SO(3) monopoles III The set of *Seiberg–Witten basic classes* is finite:

$$B(X) := \left\{ c_1(W^+) : \mathsf{SW}_X(\mathfrak{s}) \neq 0 \right\} \subset H^2(X;\mathbb{Z}).$$

X has Seiberg–Witten simple type if dim $M_{\mathfrak{s}} = 0$ for all $K \in B(X)$.

Known standard 4-manifolds have simple type (see [18, Conjecture 1.6.2]).

ASD connections, Seiberg–Witten & SO(3) monopoles IV Anti-self-dual connections

For $w \in H^2(X; \mathbb{Z})$ and $4\kappa \in \mathbb{Z}$, let *E* be a rank-2 Hermitian bundle over *X* with $c_1(E) = w$ and Pontrjagin number $p_1(\mathfrak{su}(E)) = -4\kappa$, where $\mathfrak{su}(E) \subset \mathfrak{gl}(E)$ is the SO(3) subbundle of trace-zero, skew-Hermitian endomorphisms of *E*.

The moduli space of projectively anti-self-dual (ASD) connections on E is

$$M^w_{\kappa}(X,g) := \{A \in \mathscr{A}_E : (F^+_A)_0 = 0\}/\mathscr{G}_E,$$

where \mathscr{A}_E is the Banach affine space of fixed-determinant, unitary connections A on E, and F_A^+ is the self-dual component defined by a metric g on X of the curvature F_A of A, and $(F_A^+)_0$ is the trace-free component of F_A^+ , and \mathscr{G}_E is the Banach Lie group of determinant-one, unitary automorphisms of E.

The space $M_{\kappa}^{w}(X,g)$ is an oriented smooth manifold [1, 10] for generic $g_{\chi_{C}}$

ASD connections, Seiberg–Witten & SO(3) monopoles V

SO(3) monopoles

Let $\mathfrak{t} = (\rho, W, E)$ be a *spin^u structure* over X and $\mathscr{C}_{\mathfrak{t}}$ be the space of pairs (A, Φ) of fixed-determinant, unitary connections A on a Hermitian rank-two vector bundle E and sections Φ of $W^+ \otimes E$.

We call $(A, \Phi) \in \widetilde{\mathscr{C}_t}$ an SO(3) monopole if

$$\mathfrak{S}(A,\Phi) := \begin{pmatrix} (F_A^+)_0 - \rho^{-1}(\Phi \otimes \Phi^*)_{00} \\ D_A \Phi \end{pmatrix} = 0, \tag{4}$$

where the section $(\Phi \otimes \Phi^*)_{00}$ of $\mathfrak{su}(W^+) \otimes \mathfrak{su}(E)$ is the trace-free component of $\Phi \otimes \Phi^*$ of $\mathfrak{u}(W^+) \otimes \mathfrak{u}(E)$ and D_A is the Dirac operator and $\rho : \wedge^+(T^*X) \to \mathfrak{su}(W^+)$ is an isomorphism of SO(3) bundles.

ペロト (アレイモント・モント モンタペー26/72

ASD connections, Seiberg-Witten & SO(3) monopoles VI

The moduli space of SO(3) monopoles is

$$\mathscr{M}_{\mathfrak{t}} := \left\{ (A, \Phi) \in \widetilde{\mathscr{C}}_{\mathfrak{t}} : \mathsf{Equation} \ (\mathsf{4}) \ \mathsf{holds}
ight\}$$

and it has a decomposition as a disjoint union of subsets

$$\mathscr{M}_{\mathfrak{t}} = \mathscr{M}_{\mathfrak{t}}^{*,0} \sqcup \mathscr{M}_{\mathfrak{t}}^{\{\Phi \equiv 0\}} \sqcup \mathscr{M}_{\mathfrak{t}}^{\{A \text{ reducible}\}}$$

where $\mathscr{M}_t^{*,0} \subset \mathscr{M}_t$ is the subspace of *irreducible*, *non-zero-section pairs* and a *finite-dimensional smooth manifold* for generic geometric perturbations [6, 3, 29].

ASD connections, Seiberg-Witten & SO(3) monopoles VII

Figure 4.1: SO(3) monopole moduli space $\mathscr{M}_{\mathfrak{t}}$ with Seiberg–Witten moduli subspaces $\cup_{i} \mathscr{M}_{\mathfrak{s}_{i}} \cong \mathscr{M}_{\mathfrak{t}}^{\{A \text{ reducible}\}}$ and moduli subspace $\mathscr{M}_{\kappa}^{\mathsf{w}}(X,g) \cong \mathscr{M}_{\mathfrak{t}}^{\{\Phi \equiv 0\}}$ of anti-self-dual connections

イロト イポト イヨト イヨト

28 / 72

ASD connections, Seiberg-Witten & SO(3) monopoles VIII

The circle action on sections Φ induces a circle action on \mathcal{M}_t with two types of fixed points, represented by pairs (A, Φ) such that

• $\Phi \equiv 0$ or

• A is a reducible connection.

For points $[A, \Phi] \in \mathscr{M}_t$, there are bijections between

- the subset of \mathcal{M}_t where $\Phi \equiv 0$ and the moduli space $M^w_\kappa(X,g)$ of ideal ASD connections and
- subsets of $\mathcal{M}_{\mathfrak{t}}$ where A is reducible with respect to splittings, $E = L_1 \oplus L_2$, and Seiberg–Witten moduli spaces $\mathcal{M}_{\mathfrak{s}}$ defined by $\mathfrak{s} = (\rho, W \otimes L_1)$.

29 / 72

ASD connections, Seiberg-Witten & SO(3) monopoles IX

The space \mathcal{M}_t is noncompact due to *energy bubbling*, but admits an *Uhlenbeck compactification* $\overline{\mathcal{M}}_t$.

(The subspace $\mathscr{M}_{\mathfrak{t}}^{\{\Phi\equiv 0\}} = M_{\kappa}^{w}(X,g)$ is noncompact as well and also admits an Uhlenbeck compactification, $\overline{M}_{\kappa}^{w}(X,g)$.)

We discuss the complications due to noncompactness in [4, 5].

Virtual Morse–Bott theory, existence of anti-self-dual connections, and the Bogomolov–Miyaoka–Yau inequality

Virtual Morse-Bott theory, ASD connections, and BMY I

The expected dimension of the moduli space $M_{\kappa}^{w}(X,g)$ of g-anti-self-dual connections on $\mathfrak{su}(E)$ is given by [1]

$$\dim M^w_{\kappa}(X,g) = -2p_1(\mathfrak{su}(E)) - 6\chi_h(X).$$
(5)

When g is generic in the sense of [1, 10], then $M_{\kappa}^{w}(X,g)$ is an open, smooth manifold if non-empty.

We now suppose the topology of E is constrained by a basic lower bound,

$$p_1(\mathfrak{su}(E)) \ge c_1(X)^2 - 12\chi_h(X),$$
 (6)

and ask whether existence of a spin^c structure \mathfrak{s} over X with non-zero Seiberg–Witten invariant SW_X(\mathfrak{s}) implies that $M^w_{\kappa}(X,g)$ is non-empty?

32 / 72

Virtual Morse–Bott theory, ASD connections, and BMY II For now, suppose that $\mathfrak{su}(E)$ does admit an ASD connection when inequality (6) holds and that the metric g on X is generic.

Then the moduli space $M_{\kappa}^{w}(X,g)$ of ASD connections on $\mathfrak{su}(E)$ with $w = c_1(E)$ and $\kappa = -\frac{1}{4}p_1(\mathfrak{su}(E))$ is a non-empty, smooth manifold so

 $\dim M^w_\kappa(X,g)\geq 0.$

Therefore,

$$0 \leq \frac{1}{2} \dim M_{\kappa}^{w}(X,g)$$

= $-p_{1}(\mathfrak{su}(E)) - 3\chi_{h}(X)$ (by (5))
 $\leq -(c_{1}(X)^{2} - 12\chi_{h}(X)) - 3\chi_{h}(X)$ (by (6))
= $-c_{1}(X)^{2} + 9\chi_{h}(X),$

and this yields the Bogomolov–Miyaoka–Yau inequality (1).

(UIGERO 19 € 33 / 72

Virtual Morse-Bott theory, ASD connections, and BMY III

Our strategy uses virtual Morse-Bott theory to prove existence of ASD connections on $\mathfrak{su}(E)$ for generic Riemannian metrics g on X when the basic lower bound (6) holds and $SW_X(\mathfrak{s}) \neq 0$ for some spin^c structure \mathfrak{s} .

This approach relies on our link pairing formulae [8] to prove that $\mathcal{M}_t^{*,0}$ is non-empty.

Virtual Morse–Bott theory on the moduli space of SO(3) monopoles over a closed, complex Kähler surface

Outline of the strategy I

Virtual Morse–Bott theory on the *singular* moduli space \mathcal{M}_t of SO(3) monopoles is a partial extension and adaptation of Hitchin's Morse–Bott theory on the *smooth* moduli space of Higgs pairs [12].

We use the following analogue of Hitchin's Morse function [12]:

$$f: \mathscr{M}_{\mathfrak{t}} \ni [A, \Phi] \mapsto f[A, \Phi] = \frac{1}{2} \|\Phi\|_{L^{2}(X)}^{2} \in \mathbb{R}.$$

$$\tag{7}$$

36 / 72

This function is smooth, but not necessarily Morse-Bott on \mathcal{M}_t .

We say that a point $p = [A, \Phi] \in \mathcal{M}_t$ is a *critical point* of f if $df(p) \equiv 0$ on the Zariski tangent space $T_p \mathcal{M}_t$.
Outline of the strategy II

Outline of strategy

- **9** Prove existence of spin^{*u*} structure $\mathfrak{t} = (\rho, W, E)$ with
 - $p_1(\mathfrak{su}(E))$ obeying the basic lower bound (6) and having a
 - non-empty SO(3) monopole moduli subspace $\mathscr{M}_t^{*,0}$ of irreducible, non-zero-section pairs.
- 2 Prove that all critical points of Hitchin's function on \mathcal{M}_t are
 - points in the ASD moduli subspace $M^w_\kappa(X,g)\subset \mathscr{M}_{\mathfrak{t}},$ or
 - points in moduli subspaces $M_{\mathfrak{s}} \subset \mathscr{M}_{\mathfrak{t}}$ of Seiberg–Witten monopoles with *positive virtual Morse–Bott index*.

< ロ > < 同 > < 回 > < 回 >

38 / 72

Outline of the strategy III

Figure 6.2: SO(3) monopole moduli space \mathcal{M}_t with Seiberg–Witten moduli subspaces $M_{\mathfrak{s}_i}$ and moduli subspace $M_{\kappa}^w(X,g)$ of anti-self-dual connections

This Concludes Part 1 of Our Talk

40/72

Complications in extending Hitchin's paradigm I

Part 2

In contrast to the moduli space of Higgs pairs analyzed by Hitchin [12], we must address two fundamental new difficulties in our application:

- The strata M_s ⊂ M_t of moduli subspaces of Seiberg–Witten monopoles are smooth submanifolds but not necessarily smoothly embedded as submanifolds of M_t; and
- The moduli space *M*_t of SO(3) monopoles is non-compact due to energy bubbling.

41 / 72

Complications in extending Hitchin's paradigm II

Hitchin [12] assumes that the degree of the Hermitian vector bundle E is odd and that its rank is two.

More generally, if the degree and rank of the Hermitian vector bundle E in the equations (5.1) for a Higgs pair are *coprime*, then

- Hitchin's moduli space of Higgs pairs is a finite-dimensional, analytic manifold,
- The strata of reducible Higgs pairs are smoothly embedded submanifolds, and
- I is Morse-Bott along the strata of reducible pairs with positive (classical) Morse-Bott index.

42 / 72

Feasibility of the SO(3)-monopole cobordism method I

The first step in our program is to construct a spin^{*u*} structure $\mathfrak{t} = (\rho, W, E)$ with $p_1(\mathfrak{su}(E))$ satisfying (6) and for which $\mathcal{M}_{\mathfrak{t}}^{*,0}$ is non-empty so that the gradient flow of (1.4) will have a starting point.

To obtain greater control over the characteristic classes of the spin^{*u*} structure, we work on the blow-up $\widetilde{X} := X \# \overline{\mathbb{CP}}^2$ of X.

Because $c_1(\widetilde{X})^2 = c_1(X)^2 - 1$, we replace the basic lower bound (6) with the equivalent bound $p_1 \ge c_1(\widetilde{X}) + 1 - 12\chi_h(\widetilde{X})$. We then prove

Feasibility of the SO(3)-monopole cobordism method II

Theorem 4 (Feasibility of spin^{*u*} structures; positivity of virtual Morse–Bott indices)

Let X be a standard four-manifold of Seiberg–Witten simple type, let $\widetilde{X} = X \# \overline{\mathbb{CP}}^2$ denote the blow-up of X, and let $\tilde{\mathfrak{s}}$ be a spin^c structure over X with non-zero Seiberg–Witten invariant SW_X($\tilde{\mathfrak{s}}$). Then there exists a spin^u structure $\tilde{\mathfrak{t}}$ over \tilde{X} such the following hold:

$$M_{\tilde{\mathfrak{s}}} \subset \mathscr{M}_{\tilde{\mathfrak{t}}};$$

2) The moduli space
$$\mathscr{M}^{*,0}_{\tilde{\mathfrak{t}}}$$
 is non-empty; and

$$p_1(\tilde{\mathfrak{t}}) \geq c_1(\widetilde{X})^2 + 1 - 12\chi_h(\widetilde{X}).$$

Moreover, for all non-empty Seiberg–Witten moduli subspaces $M_{\mathfrak{s}'} \subset \mathscr{M}_{\mathfrak{t}}$, the virtual Morse–Bott index of the Hitchin function f in (7) along $M_{\mathfrak{s}'}$ is **positive**.

While we prove Theorem 6 in [4] for closed complex Kähler surfaces, the calculations extend to standard four-manifolds.

43 / 72

Critical points in space of SO(3) monopoles I

The next step in our program is to use Frankel's Theorem (see Theorem 1) to identify the critical points of Hitchin's function on \mathcal{M}_t .

In this talk, we shall restrict our discussion to SO(3) monopoles over closed complex Kähler surfaces.

Suppose that (X, g, J) is a complex Kähler surface, with Kähler form $\omega(\cdot, \cdot) = g(\cdot, J \cdot)$.

A version of the **Hitchin–Kobayashi bijection** then identifies the moduli space \mathcal{M}_t of SO(3) monopoles with the moduli space of *stable* holomorphic pairs (see Dowker [2], Lübke and Teleman [19, 20], and Okonek and Teleman [24, 25]).

Thus $\mathscr{M}_{\mathfrak{t}}$ is a *complex analytic space* and the open subspace $\mathscr{M}_{\mathfrak{t}}^{sm} \subset \mathscr{M}_{\mathfrak{t}}$ of smooth points is a *complex manifold*, generalizing results by Itoh

45 / 72

Critical points in space of SO(3) monopoles II

[13, 14] for the complex structure on the moduli space $M_{\kappa}^{w}(X,g)$ of anti-self-dual connections via its identification with the moduli space of stable holomorphic bundles.

In [5], we extend the proofs by Itoh [15] and Kobayashi [16] of their results for $M_{\kappa}^{w}(X,g)$ to prove that the L^{2} metric **g** and integrable almost complex structure **J** on $\mathscr{M}_{\mathfrak{t}}^{\mathrm{sm}}$ define a Kähler form $\boldsymbol{\omega} = \mathbf{g}(\cdot, \mathbf{J} \cdot)$ on $\mathscr{M}_{\mathfrak{t}}^{\mathrm{sm}}$.

When g (and other geometric perturbation parameters in the SO(3) monopole equations) are generic, then $\mathcal{M}_t^{sm} = \mathcal{M}_t^{*,0}$ but if g is Kähler and thus non-generic, this equality need not hold.

We address this issue in [5] and outline them in [4].

Critical points in space of SO(3) monopoles III

As in the analysis [12, Sections 6 and 7] by Hitchin, the function f in (7) is a moment map for the circle action on \mathcal{M}_{t}^{sm} , that is,

$$df = \iota_{\boldsymbol{\xi}} \boldsymbol{\omega} \quad \text{on } \mathscr{M}^{\mathrm{sm}}_{\mathfrak{t}},$$

where the vector field $\boldsymbol{\xi}$ on \mathcal{M}_t^{sm} is the generator of the S^1 action on \mathcal{M}_t given by scalar multiplication on the sections Φ .

Because the fundamental 2-form ω is *non-degenerate*, then

- $[A, \Phi] \in \mathcal{M}_t$ is a *critical point of* $f : \mathcal{M}_t \to \mathbb{R}$ if and only if
- $[A, \Phi]$ is a fixed point of the S^1 action on \mathcal{M}_t .

From our previous work on SO(3) monopoles [6], we know that $[A, \Phi]$ is a fixed point of the S^1 action on \mathcal{M}_t if and only if

46 / 72

Critical points in space of SO(3) monopoles IV

- (A, Φ) is a reducible pair with Φ ≠ 0, equivalent to a Seiberg–Witten monopole, or
- $\Phi \equiv 0$, equivalent to a projectively anti-self-dual connection.

Thus, as a consequence of Theorem 1 and our results in [6, 7] that identify the fixed points of the S^1 action on \mathcal{M}_t , we have the

Theorem 5 (All critical points of Hitchin's Hamiltonian function represent either Seiberg–Witten monopoles or anti-self-dual connections)

Let $[A, \Phi] \in \mathcal{M}_{\mathfrak{t}}$ be a critical point of Hitchin's function (7). If $\Phi \not\equiv 0$, then there exists a spin^c structure \mathfrak{s} over X such that $[A, \Phi] \in M_{\mathfrak{s}} \subset \mathcal{M}_{\mathfrak{t}}$.

Virtual Morse-Bott properties of critical points I

If a Seiberg–Witten fixed point $p = [A, \Phi]$ is a **smooth** point of \mathcal{M}_t then, by arguments generalizing those of Hitchin [12, Section 7], one can apply Frankel's Theorem 1 to

- prove that f is Morse-Bott at p and
- compute the Morse index of f (the dimension of the maximal negative definite subspace of Hess f(p) on T_pM_t) as the dimension of the negative weight space T_p⁻M_t for the S¹ action on T_pM_t.

The dimension of $T_p^- \mathcal{M}_t$ can be computed via the Atiyah–Singer Index Theorem or the Hirzebruch–Riemann–Roch Index Theorem via the identification of \mathcal{M}_t with a moduli space of stable holomorphic pairs.

If the Seiberg–Witten fixed point $p = [A, \Phi]$ is a **singular** point of \mathcal{M}_t , as is more typical, we use the fact that $M_{\mathfrak{s}} \subset \mathcal{M}_t$ is a submanifold of a RUTGERS Virtual Morse–Bott properties of critical points II smooth virtual moduli space $\mathscr{M}_t^{\text{vir}} \subset \mathscr{C}_t$ implied by the Kuranishi model given by the *elliptic deformation complex* for the SO(3) monopole equations with differentials $d_{A,\Phi}^{\bullet}$ and cohomology groups $\mathbf{H}_{A,\Phi}^{\bullet}$.

The differentials $d_{A,\Phi}^{\bullet}$ are given by the linearizations

$$\ \, { \ 0 } \ \, d^0_{A,\Phi} \ \, { \rm at } \ \, { \rm id }_E \ \, { \rm of } \ { \rm the } \ { \rm map } \ \, \mathscr{G}_E \ni u \mapsto u(A,\Phi) \in \tilde{\mathscr{C}_{\mathfrak{t}}};$$

$$\ \, {\it 0} \ \, d^1_{A,\Phi} \ \, {\it at} \ \, (A,\Phi) \ \, {\it of} \ \, {\it SO}(3) \ \, {\it monopole} \ \, {\it map} \ \, \widetilde{\mathscr{C}_t} \ni (A,\Phi) \mapsto \mathfrak{S}(A,\Phi).$$

Virtual Morse-Bott properties of critical points III

The cohomology groups $\mathbf{H}_{A,\Phi}^{\bullet}$ are given by

- $\mathbf{H}_{A,\Phi}^{0} = \text{Ker } d_{A,\Phi}^{0}$, Lie algebra of isotropy subgroup of \mathscr{G}_{E} at (A, Φ) ;
- **2** $\mathbf{H}_{A,\Phi}^1 = \operatorname{Ker}(d_{A,\Phi}^1 + d_{A,\Phi}^{0,*})$, Zariski tangent space $T_{A,\Phi}\mathscr{M}_{\mathfrak{t}}$ and the tangent space $T_{A,\Phi}\mathscr{M}_{\mathfrak{t}}^{\operatorname{vir}}$;

3
$$\mathbf{H}^2_{A,\Phi} = \text{Ker } d^{1,*}_{A,\Phi}, \text{ obstruction to smoothness at } (A, \Phi).$$

The space $\mathscr{M}_t^{\mathrm{vir}}$ is a complex Kähler manifold of dimension equal to that of the Zariski tangent space $T_p \mathscr{M}_t$ and contains $\mathscr{M}_t^{\mathrm{sm}}$ and M_s as complex Kähler submanifolds.

The set of fixed points of the S^1 action on $\mathscr{M}_t^{\mathrm{vir}}$ coincides with $M_{\mathfrak{s}}$ and f is Morse–Bott on $\mathscr{M}_t^{\mathrm{vir}}$ with critical submanifold $M_{\mathfrak{s}}$.

<ロ><合><合><合><合><合><合><合><合><合></c>

Virtual Morse-Bott properties of critical points IV

The moduli space of Seiberg–Witten monopoles M_{s} is a smooth manifold but **not necessarily an embedded smooth submanifold** of \mathcal{M}_{t} .

The elliptic deformation complex defining $\mathbf{H}_{A,\Phi}^{\bullet}$ splits into a

- **normal** deformation subcomplex with cohomology groups $\mathbf{H}_{A,\Phi}^{\bullet,n}$, and a
- tangential deformation subcomplex with cohomology groups $\mathbf{H}_{A.\Phi}^{\bullet,t}$.

The normal elliptic deformation complex defining $\mathbf{H}_{A,\Phi}^{\bullet,n}$ further splits into a

- **positive weight** subcomplex with cohomology groups $H_{A,\Phi}^{\bullet,+}$, and a
- **negative weight** subcomplex with cohomology groups $\mathbf{H}_{A,\Phi}^{\bullet,-}$.

<ロト < 合 ト < き ト < き ト き う Q (* 51/72

Virtual Morse-Bott properties of critical points V

We define the **virtual Morse–Bott index** of f at p to be minus the (Atiyah–Singer) index of the **negative weight**, **normal elliptic deformation subcomplex** defining $\mathbf{H}_{A,\Phi}^{\bullet,-}$ and compute these indices using the Hirzebruch–Riemann–Roch Index Theorem to give

Virtual Morse-Bott properties of critical points VI

Theorem 6 (Virtual Morse–Bott index of Hitchin's Hamiltonian function at a point represented by a Seiberg–Witten monopole)

Let X be a closed complex Kähler surface and $[A, \Phi] \in M_{\mathfrak{s}} \subset \mathscr{M}_{\mathfrak{t}}$ be a Seiberg–Witten monopole in the SO(3) monopole moduli space $\mathscr{M}_{\mathfrak{t}}$. The virtual Morse–Bott index of Hitchin's function f in (7) at $[A, \Phi]$ is

$$\lambda_{[A,\Phi]}(f) = \dim \mathbf{H}_{A,\Phi}^{1,-} - \dim \mathbf{H}_{A,\Phi}^{2,-} - \dim \mathbf{H}_{A,\Phi}^{0,-}$$

= $-\chi_h(X) + \frac{1}{2} (c_1(\mathfrak{s}) - c_1(\mathfrak{t})) \cdot K_X - \frac{1}{2} (c_1(\mathfrak{s}) - c_1(\mathfrak{t}))^2,$ (8)

where $K_X \in H^2(X; \mathbb{Z})$ denotes the canonical class of X, and $c_1(\mathfrak{s}) := c_1(W^+) \in H^2(X; \mathbb{Z})$ for $\rho = (\mathfrak{s}, W)$ and $W = W^+ \oplus W$, and $c_1(\mathfrak{t}) := c_1(E) \in H^2(X; \mathbb{Z})$.

イロト イポト イヨト イヨト

54 / 72

Virtual Morse-Bott properties of critical points VII

We included $\mathbf{H}_{A,\Phi}^{0,-}$ above for completeness, but for SO(3) monopoles we have $\mathbf{H}_{A,\Phi}^{0} = 0$ unless $\Phi \equiv 0$ and A is reducible (a case that can be excluded by standard techniques for the moduli space of SO(3) monopoles.

The formula (8) for the virtual Morse–Bott index in the conclusion of Theorem 6 continues to hold for standard four-manifolds.

Thank you for your attention!

Appendix on unstable manifolds, resolution of singularities, and virtual Morse index

Unstable manifolds and resolution of singularities I

Figure 7.3: Stable and unstable manifolds $W^{\pm}(p)$ for the height function around a saddle point p in the torus in M in $X = \mathbb{R}^3$

(a)

Unstable manifolds and resolution of singularities II

Figure 7.4: Open neighborhoods U^{\pm} in \mathbb{R}^2 of the stable and unstable manifolds W^{\pm} for the gradient flow of $f(x, y) = \frac{1}{2}(x^2 - y^2)$ near the origin

Rutgers ・ロト ・ ア・ ・ ヨト ・ ヨト ・ ヨー シーマ へ 58 / 72

Unstable manifolds and resolution of singularities III

Figure 7.5: Open neighborhood U^- of the unstable manifold W_p^- for the gradient flow of the height function near a saddle point p in the torus M in $X = \mathbb{R}^3$

Rungers ペロト ペアト ペヨト ペヨト ヨーシーマへで 59/72

Unstable manifolds and resolution of singularities IV

Figure 7.6: Quadratic cone $X = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 - x_2^2 - x_3^2 = 0\}$ in $M = \mathbb{R}^3$, singular locus $X_{sing} = \{p\}$, and smooth function $f : M \to \mathbb{R}$ with $f : X \to \mathbb{R}$ assumed to have critical point at p = (0, 0, 0), so Ker $df(p) = T_p X = \text{Ker } dF(p) = \mathbb{R}^3 = T_p M$ and Coker $dF(p) = \mathbb{R}$

Unstable manifolds and resolution of singularities V

Figure 7.7: Resolution of the quadratic cone with strict transform $X' = \{(u_1, u_2, u_3) \in \mathbb{R}^3 : u_2^2 + u_3^2 = 1\}$, exceptional divisor $E' = \{(u_1, u_2, u_3) \in \mathbb{R}^3 : u_1 = 0\}$, and point $p' \in E' \cap X'$ obtained by $x_1 = u_1$, $x_2 = u_1u_2$, and $x_3 = u_1u_3$

(a)

Unstable manifolds and resolution of singularities VI

Figure 7.8: Resolution of the quadratic cone with strict transform X', exceptional divisor E', point $p' \in E' \cap X'$, two-dimensional subspace $T_p^- X \cong T_{p'}^- M$, one-dimensional unstable manifold $C' = X' \cap T_{p'}^- M$, and virtual Morse index $\lambda_p^-(f) := \dim T_p^- X - \dim \operatorname{Coker} dF(p) = 2 - 1 = 1$

(a)

Unstable manifolds and resolution of singularities VII

Figure 7.9: Quadratic cone with singular locus $X_{sing} = \{p\}$ and one-dimensional unstable subvariety $C = \pi(C')$

ペロト < 圏ト < 差ト < 差ト 差 通 の へで 63/72</p>

Unstable manifolds and resolution of singularities VIII

Figure 7.10: Resolution of the quadratic cone with strict transform X', exceptional divisor E', point $p' \in E' \cap X'$, and one-dimensional subspace $T_p^- X \cong T_{p'}^- M$, and virtual Morse index $\lambda_p^-(f) = \dim T_p^- X - \dim \operatorname{Coker} dF(p) = 1 - 1 = 0$

Bibliography

- [1] Simon K. Donaldson and Peter B. Kronheimer, *The geometry of four-manifolds*, Oxford University Press, New York, 1990.
- [2] Ian C. Dowker, *PU(2) monopoles on Kaehler surfaces*, Ph.D. thesis, Harvard University, Cambridge, MA, 2000. MR 2700715
- Paul M. N. Feehan, Generic metrics, irreducible rank-one PU(2) monopoles, and transversality, Comm. Anal. Geom. 8 (2000), no. 5, 905–967, arXiv:math/9809001. MR 1846123
- [4] Paul M. N. Feehan and Thomas G. Leness, Introduction to virtual Morse–Bott theory on analytic spaces, moduli spaces of SO(3) monopoles, and applications to four-manifolds, 96 pages, arXiv:2010.15789.
- [5] Paul M. N. Feehan and Thomas G. Leness, Virtual Morse-Bott theory on moduli spaces of SO(3) monopoles and applications to four-manifolds, 192 pages, preprint.

イロト イポト イヨト イヨト

- [6] Paul M. N. Feehan and Thomas G. Leness, PU(2) monopoles. I. Regularity, Uhlenbeck compactness, and transversality, J. Differential Geom. 49 (1998), 265–410. MR 1664908 (2000e:57052)
- Paul M. N. Feehan and Thomas G. Leness, PU(2) monopoles and links of top-level Seiberg-Witten moduli spaces, J. Reine Angew. Math. 538 (2001), 57–133, arXiv:math/0007190. MR 1855754
- [8] Paul M. N. Feehan and Thomas G. Leness, PU(2) monopoles. II. Top-level Seiberg-Witten moduli spaces and Witten's conjecture in low degrees, J. Reine Angew. Math. 538 (2001), 135–212, arXiv:dg-ga/9712005. MR 1855755
- [9] Theodore Frankel, *Fixed points and torsion on Kähler manifolds*, Ann. of Math. (2) **70** (1959), 1–8. MR 131883
- [10] Daniel S. Freed and Karen K. Uhlenbeck, *Instantons and four-manifolds*, second ed., Mathematical Sciences Research Institute Publications, vol. 1, Springer, New York, 1991. MR 1081321 (91i:57019)

- [11] Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326. MR 0199184
- [12] Nigel J. Hitchin, *The self-duality equations on a Riemann surface*, Proc. London Math. Soc. (3) **55** (1987), no. 1, 59–126. MR 887284 (89a:32021)
- [13] Mitsuhiro Itoh, Geometry of Yang-Mills connections over a Kähler surface, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 9, 431–433. MR 732603
- [14] Mitsuhiro Itoh, The moduli space of Yang-Mills connections over a Kähler surface is a complex manifold, Osaka J. Math. 22 (1985), no. 4, 845–862. MR 815453
- [15] Mitsuhiro Itoh, Geometry of anti-self-dual connections and Kuranishi map, J. Math. Soc. Japan 40 (1988), no. 1, 9–33. MR 917392

イロト イポト イヨト イヨト

[16] Shoshichi Kobayashi, Differential geometry of complex vector bundles, Princeton Legacy Library, Princeton University Press, Princeton, NJ, [2014], Reprint of the 1987 edition [MR0909698]. MR 3643615

- [17] Peter B. Kronheimer and Tomasz S. Mrowka, *The genus of embedded surfaces in the projective plane*, Math. Res. Lett. 1 (1994), 797–808. MR 1306022 (96a:57073)
- [18] Peter B. Kronheimer and Tomasz S. Mrowka, *Monopoles and three-manifolds*, Cambridge University Press, Cambridge, 2007. MR 2388043 (2009f:57049)
- [19] Martin Lübke and Andrei Teleman, *The Kobayashi-Hitchin correspondence*, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. MR 1370660 (97h:32043)
- [20] Martin Lübke and Andrei Teleman, The universal Kobayashi-Hitchin correspondence on Hermitian manifolds, Mem. Amer. Math. Soc. 183 (2006), no. 863. MR 2254074

イロト イポト イヨト イヨト

- [21] Yoichi Miyaoka, On the Chern numbers of surfaces of general type, Invent. Math. 42 (1977), 225–237. MR 0460343
- [22] John W. Morgan, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, vol. 44, Princeton University Press, Princeton, NJ, 1996. MR 1367507
- [23] Liviu I. Nicolaescu, Notes on Seiberg–Witten theory, Graduate Studies in Mathematics, vol. 28, American Mathematical Society, Providence, RI, 2000. MR 1787219 (2001k:57037)
- [24] Christian Okonek and Andrei Teleman, *The coupled Seiberg-Witten equations, vortices, and moduli spaces of stable pairs*, Internat. J. Math. 6 (1995), no. 6, 893–910, arXiv:alg-geom/9505012. MR 1354000
- [25] Christian Okonek and Andrei Teleman, *Quaternionic monopoles*, Comm. Math. Phys. **180** (1996), no. 2, 363–388, arXiv:alg-geom/9505029. MR 1405956

- [26] Dietmar A. Salamon, Spin geometry and Seiberg-Witten invariants, Mathematics Department, ETH Zürich, unpublished book, available at math.ethz.ch/~salamon/publications.html.
- [27] Clifford H. Taubes, *The Seiberg–Witten invariants and symplectic forms*, Math. Res. Lett. **1** (1994), no. 6, 809–822. MR 1306023 (95j:57039)
- [28] Clifford H. Taubes, More constraints on symplectic forms from Seiberg-Witten invariants, Math. Res. Lett. 2 (1995), no. 1, 9–13. MR 1312973
- [29] Andrei Teleman, *Moduli spaces of* PU(2)-*monopoles*, Asian J. Math.
 4 (2000), no. 2, 391–435, arXiv:math/9906163. MR 1797591
- [30] Valentino Tosatti, Uniqueness of CPⁿ, Expo. Math. 35 (2017), no. 1, 1–12. MR 3626201
- [31] Shing-Tung Yau, Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 5, 1798–1799. MR 0451180

[32] Shing-Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. **31** (1978), no. 3, 339–411. MR 480350

