A surface embedding fliedrem joint with Daniel Kasprowski Mark Powell Peter Teichner

O: Given a map of a surface in a 4-myld, when is IT
homotopic to a (loc-flat) embedding?
$$(u, u \cap Z) \approx (\mathbb{R}^4, \mathbb{R}^2)$$

e.g. which elements of $\pi_2(M^4)$ are nep. by embedded sphere?

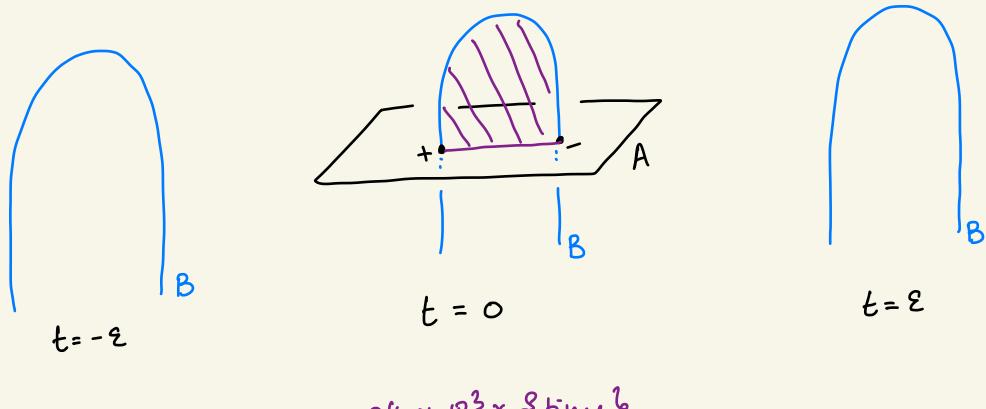
• when does a knot in S³ bound an embedded disc in B⁴?

Prototypical result: Disc embedding theorem Casson Casson, Freedman'82, Freedman-Quinn'90 M⁴ connected topological mild, π, Mgood. Z = LZ; compact sonface, each Z; rimply connected Me C ZC • the algebraic intersection numbers of F vanish such that • IG: US² => M framed, alg. dual spheres for F Then F is (neg.) htpic rel ∂ to a loc. flat embedding \overline{F} [with geon dual spheres \overline{G} s.t. $\overline{G} \simeq G$.] $\overline{\pi_1 \pm 1}$ Powell-R-Teichner'zo.

Intersection numbers
$$f(f,g) := \sum_{\substack{p \in f, hg}} \mathcal{E}(p) Y(p) \quad \mathcal{E}(T_{L}, M]$$

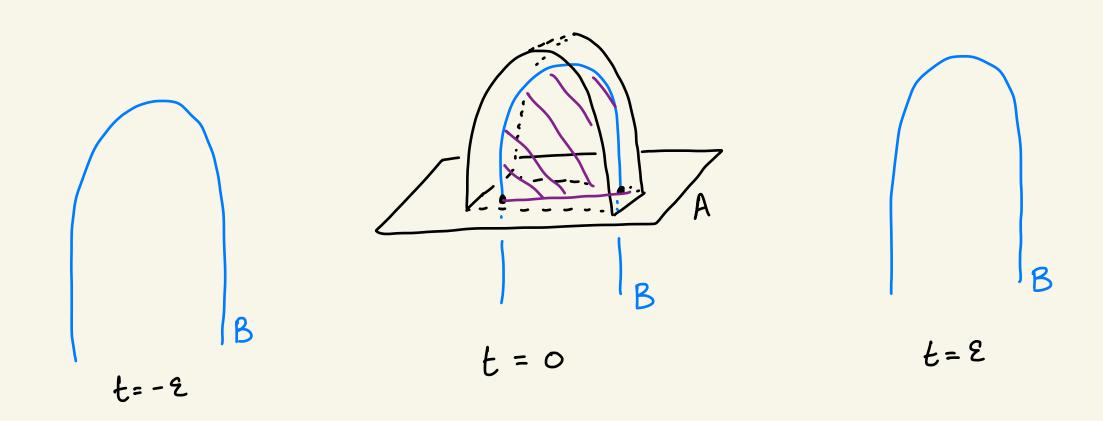
 $f(f,g) := \sum_{\substack{p \in f, hg}} \mathcal{E}(p) Y(p) \quad \mathcal{E}(T_{L}, M]$
well defined if f, g are ning. connected
(no dubo whiskers)
 $\chi(f,g) = 0 \iff all points in f hg are$
 $gen coll.$
 $gen co$

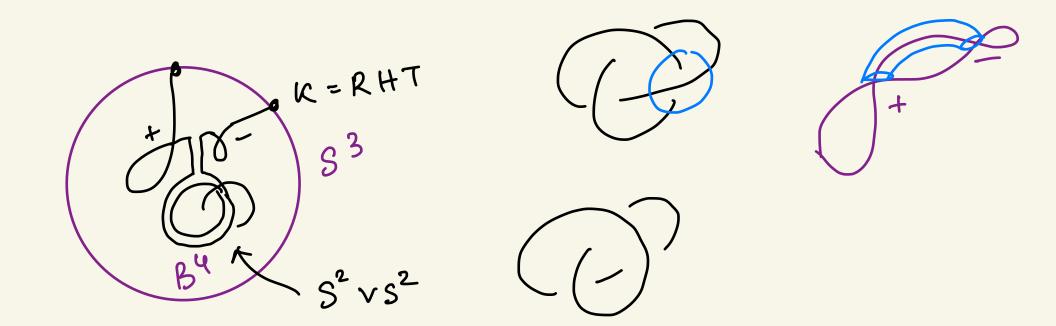
The Whitney hick



IR4 = IR3 x ftime }

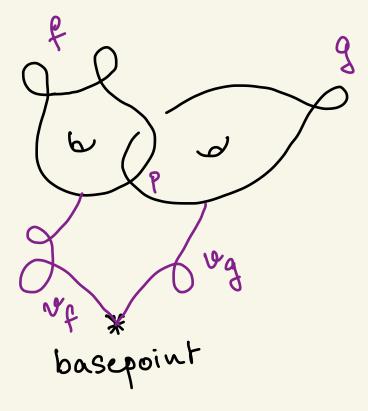
The whitney hick





RHT is not slice i.e. I emb disc bounded
by K.
Every K
$$\leq$$
 S³ bounds on emb. disc in $\frac{4}{n}$ CP² $\frac{4}{n}$ CP²
given K, min M s.t.
given K, min M s.t.
K mel-hom slice in $\frac{4}{n}$ CP² $-\frac{4}{n}$ S² XS²
S² XS²
S² XS²

Intersection numbers

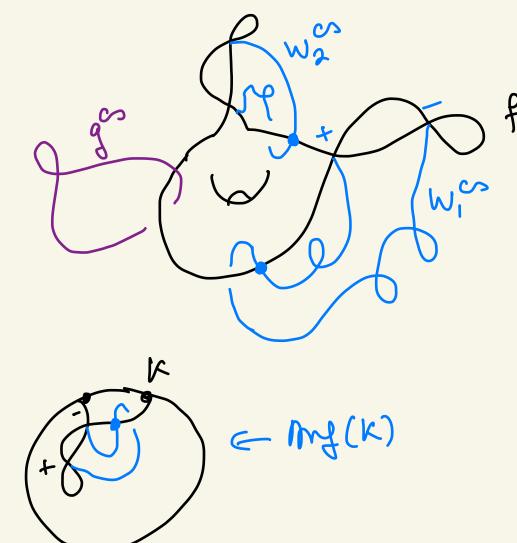


λ(f,g) not well defined in 7/L[π,M]! but court in a double coset space

The Kervaire - Milnor invariant [for disco/spheres, due to FQ90 §10+Stong]

^ ^

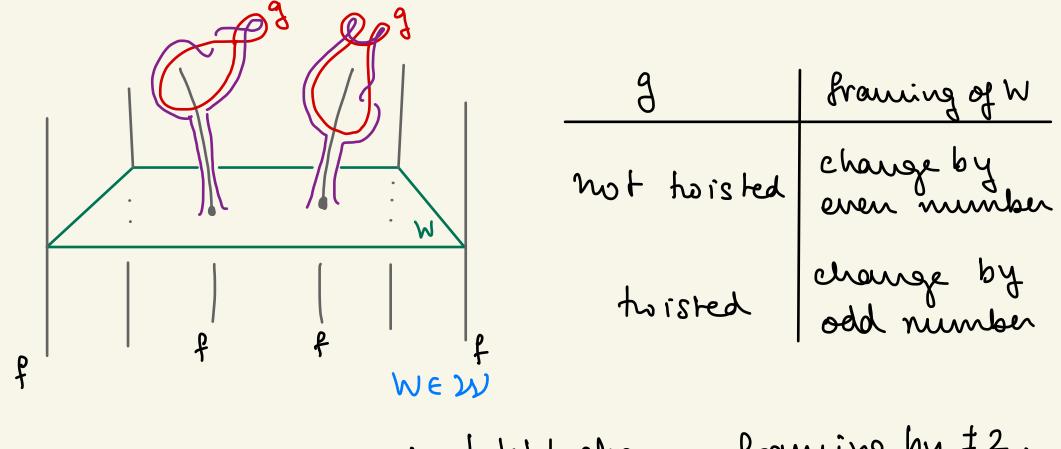
Let
$$W^{cs} = \{W_e^{cs}\} \subseteq W$$
 subset pouring introd F^{cs} .
Then $Rm(F, W) := \sum_{R} |IntW_e^{cs} \cap F^{cs}| \mod 2$.



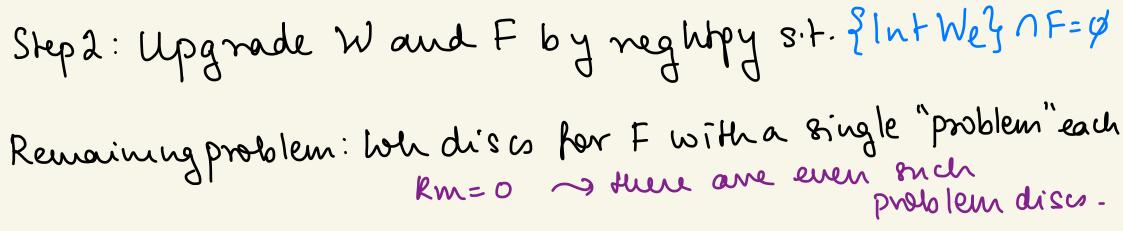
km(f, w) = 1 $km(f_{a}, w) = 0 \in \pi 1/2$

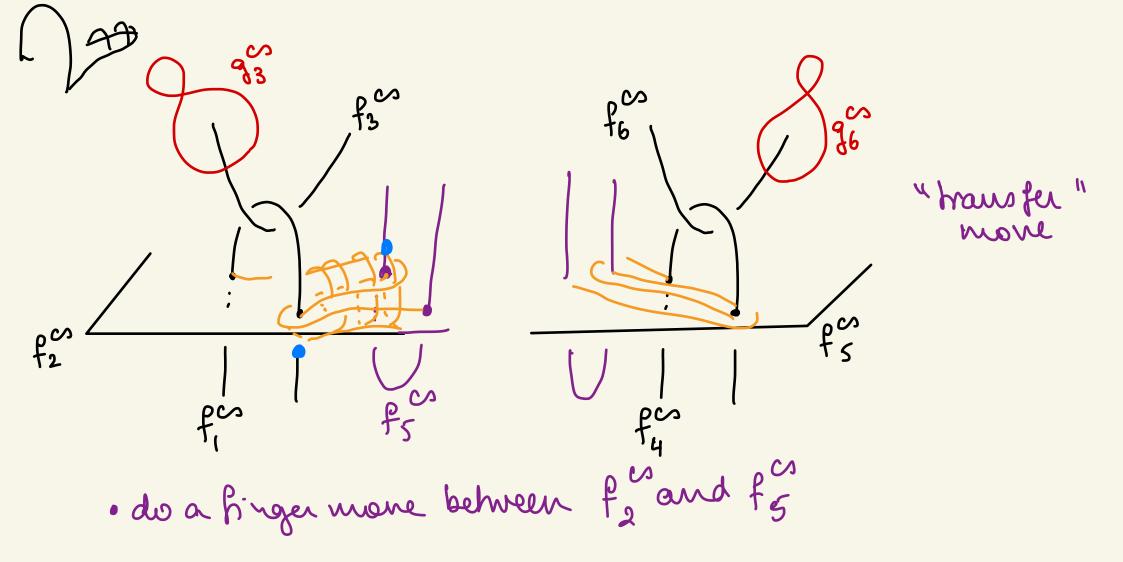
Question: When is km(F, W) independent of W? (Spoiler: when F is b-characteristic) Proof outline: Suppose ZW s.t. Rm (F, W)= DE76/2

Step5: Whitney more Foren Ever to get desired F.



local cusp moves in IntW changes framing by ±2.





Thomks!

$$\frac{2}{16} + \frac{2}{16} + \frac{2}{16}$$