Anchored foams and annular homology Joint with Mikhail Khovanov

Ross Akhmechet

University of Virginia

Let $L \subset \mathbb{R}^3$ be an oriented link with diagram D. Khovanov defines a chain complex $C_{*,*}(D)$ of graded abelian groups.

Theorem (Khovanov)

The chain homotopy class of $C_{*,*}(D)$ is an invariant of L, and its graded Euler characteristic is the Jones polynomial of L.

- $C_{*,*}(D)$ is constructed combinatorially from D.
- A key ingredient is a 2D-TQFT (equivalently, a Frobenius algebra).
- A Frobenius algebra is a pair (A, R) where R is a commutative ring and A is an R-algebra, with maps

$$\begin{array}{ll} m: A \otimes A \to A & \Delta: A \to A \otimes A \\ \eta: R \to A & \varepsilon: A \to R \end{array}$$

satisfying certain properties.

(A, R) yields a 2D TQFT $\mathcal{F} = \mathcal{F}_A$ as follows:

- If C consists of k circles, set $\mathcal{F}(C) = A^{\otimes k}$.
- For a cobordism S from C₀ to C₁, define an R-linear map F(S): F(C₀) → F(C₁) by writing S as a union of elementary pieces:

and assigning the maps

 $m: A \otimes A \to A, \qquad \Delta: A \to A \otimes A, \qquad \eta: R \to A, \qquad \varepsilon: A \to R$

accordingly.

• This assembles into a functor $\mathcal{F}: 2 \operatorname{Cob} \to R - \operatorname{mod}$.

Some relevant Frobenius algebras:

the U(2)-equivariant cohomology of \mathbb{CP}^1 . This yields *equivariant* or *universal* Khovanov homology.

Equivariant versions of link homology have been developed:

- Mackaay-Vaz in the *sl*(3) setting [MV07].
- Krasner for *sl*(*n*) Khovanov-Rozansky homology [Kra10].
- Wu for colored sl(n) homology [Wu12].

Recent constructions by Ehrig-Tubbenhauer-Wedrich [ETW18] of sl(n) homology via Robert-Wagner [RW20] closed foam evaluation are naturally equivariant.

Annular link homology

- Asaeda-Przytycki-Sikora [APS04] defined a homology theory for links in interval bundles over surfaces.
- The special case of the thickened annulus is known as *annular Khovanov homology* or *annular APS homology*.
- Let $\mathbb{A} := S^1 \times [0,1]$ denote the annulus.
- For a link $L \subset \mathbb{A} \times [0,1]$, project onto $\mathbb{A} \times \{0\}$ to obtain a diagram.
- $\bullet\,$ Form the cube of resolutions as usual, with all smoothings drawn in $\mathbb{A}.$
- Apply the TQFT $\bigcirc \mapsto \mathbb{Z}[X]/(X^2)$.
- Winding number induces a filtration which is respected by the differential. The annular chain complex is the associated graded.
- Annular homology is triply graded.
- An equivariant version of annular homology was defined in earlier work using a filtration as above.
- We define equivariant *sl*(2) and *sl*(3) annular homology via closed foam evaluation, in the spirit of Robert-Wagner [RW20].

A., Equivariant annular Khovanov homology. arXiv:2008.00577

Annular link homology

Identify the interior of A with the punctured plane $\mathcal{P} := \mathbb{R}^2 \setminus \{(0,0)\}$. Links in $\mathbb{A} \times [0,1]$ correspond to links in $\mathcal{P} \times [0,1]$. Let $L = \{(0,0)\} \times \mathbb{R} \subset \mathbb{R}^3$ denote the z-axis (anchor line). We will define a suitable TQFT via universal construction:

- A module $\langle C \rangle$ for a collection of simple closed curves $C \subset \mathcal{P}$.
- A map $\langle S \rangle$: $\langle C_0 \rangle \rightarrow \langle C_1 \rangle$ for a (generic) cobordism $S \subset \mathbb{R}^2 \times [0,1]$ from C_0 to C_1 .

Idea (Blanchet-Habegger-Masbaum-Vogel): invariants of closed *n*-dimensional objects can yield TQFT for (n - 1)-dimensional objects.

This was used by Robert-Wagner, who give an evaluation of closed foams which categorifies Murakami-Ohtsuki-Yamada (MOY) calculus.

In our sl(2) annular setting:

Definition

An anchored surface is a closed surface $S \subset \mathbb{R}^3$ which is transverse to the line *L*. Intersection points $S \cap L$ (called *anchor points*) come with a *labeling*

 $\ell \colon S \cap L \to \{1,2\}.$

Components of S may be decorated by finitely many dots.

We also consider anchored cobordisms $S \subset \mathbb{R}^2 \times [0,1]$, with $\partial S \subset \mathcal{P} \times \{0,1\}$ and points in $S \cap L$ carrying labels in $\{1,2\}$.

Examples

Universal construction

Suppose we have an evaluation $\langle S \rangle \in R$ for closed anchored surfaces, valued in some commutative ring R.

- Let $C \subset \mathcal{P}$ be a collection of simple closed curves.
- Let Fr(C) be the free *R*-module with basis all anchored cobordisms $S \subset \mathbb{R}^2 \times (-\infty, 0]$ with $\partial S = C$.

Define

$$(-,-)$$
: $Fr(C) \times Fr(C) \rightarrow R$

by

$$(S_1, S_2) = \langle \overline{S_1} S_2 \rangle$$

where $\overline{S_1}$ is the reflection of S_1 through $\mathbb{R}^2 \times \{0\}$.

Set

$$\mathsf{ker}((-,-)) = \{x \in \mathsf{Fr}(\mathcal{C}) \mid (x,y) = 0 \text{ for all } y \in \mathsf{Fr}(\mathcal{C})\},\$$

and define the state space

$$\langle C \rangle = \operatorname{Fr}(C) / \operatorname{ker}((-,-)).$$

Example

For an anchored cobordism $S\colon \mathit{C}_0 o \mathit{C}_1$, we immediately obtain a map

$$\langle S \rangle : \langle C_0 \rangle \rightarrow \langle C_1 \rangle$$

defined by $\langle S \rangle$ ([S']) = [SS']. This assignment is functorial.

Universal construction

Example

Evaluation of anchored surfaces

Let S be an anchored surface.

- Let Comp(S) denote the components of S.
- A coloring of S is a function

$$c: \operatorname{Comp}(S) \to \{1, 2\}.$$

• Let adm(S) denote the set of colorings.

Consider the ring

$$R_{\alpha} := \mathbb{Z}[\alpha_1, \alpha_2].$$

For $c \in adm(S)$, will define the *evaluation*

$$\langle S, c \rangle \in R_{\alpha}[(\alpha_1 - \alpha_2)^{-1}],$$

and then set

$$\langle S \rangle := \sum_{c \in \mathsf{adm}(S)} \langle S, c \rangle$$

Fix a closed anchored surface S and a coloring c.

- For i = 1, 2, let $d_i(c)$ denote the number of dots on components colored i.
- Let $S_2(c)$ denote the union of the 2-colored components.
- For $p \in S \cap L$, let $\ell(p)$ denote the label of p (independent of c).
- Let c(p) denote the color of the component containing p (depends on c). Define

$$\langle S, c \rangle = (-1)^{\chi(S_2(c))/2} \frac{\alpha_1^{d_1(c)} \alpha_2^{d_2(c)}}{(\alpha_1 - \alpha_2)^{\chi(S)/2}} \left(\prod_p (\alpha_{c(p)} - \alpha_{\ell(p)}) \right)^{1/2}$$

$$\langle \mathbf{S}, \mathbf{c} \rangle = (-1)^{\chi(S_2(\mathbf{c}))/2} \frac{\alpha_1^{d_1(\mathbf{c})} \alpha_2^{d_2(\mathbf{c})}}{(\alpha_1 - \alpha_2)^{\chi(S)/2}} \left(\prod_p (\alpha_{c(p)} - \alpha_{\ell(p)}) \right)^{1/2}$$

The square root is defined as follows.

- If a component $S' \subset S$ is colored $i \in \{1, 2\}$ and has an anchor point labeled i, then $\langle S, c \rangle = 0$.
- Otherwise, S' has $2k \ge 0$ anchor points with label $j \ne i$, and it contributes $(\alpha_i \alpha_j)^k$.

Set

$$\langle S
angle = \sum_{c \in \mathsf{adm}(S)} \left\langle S, c
ight
angle.$$

If $S = S_1 \sqcup \cdots \sqcup S_n$, then $\langle S \rangle = \langle S_1 \rangle \cdots \langle S_n \rangle$. To see that $\langle S \rangle \in \mathbb{Z}[\alpha_1, \alpha_2]$:

- Only a 2-sphere \mathbb{S}^2 has positive Euler characteristic.
- If such a component is disjoint from L then the sum over its two colorings is $\frac{\alpha_1^d \alpha_2^d}{\alpha_1 \alpha_2} \in \mathbb{Z}[\alpha_1, \alpha_2].$
- If such a component intersects *L* then the contributions from anchor points cancel with the denominator.

Evaluation of anchored surfaces

$$\langle S, c \rangle = (-1)^{\chi(S_2(c))/2} \frac{\alpha_1^{d_1(c)} \alpha_2^{d_2(c)}}{(\alpha_1 - \alpha_2)^{\chi(S)/2}} \left(\prod_p (\alpha_{c(p)} - \alpha_{\ell(p)}) \right)^{1/2}$$

Note that $\langle S \rangle$ is not a symmetric polynomial.

Remark

If $S \cap L = \emptyset$, then $\langle S \rangle$ is the usual evaluation of a closed surface in equivariant (universal) s/(2) link homology.

In this case, $\langle S \rangle$ is a symmetric polynomial,

$$\langle S \rangle \in \mathbb{Z}[E_1, E_2] \subset \mathbb{Z}[\alpha_1, \alpha_2],$$

with

$$E_1 = \alpha_1 + \alpha_2, \quad E_2 = \alpha_1 \alpha_2.$$

The Frobenius algebra assigned to a contractible circle is

$$\frac{\mathbb{Z}[\alpha_1,\alpha_2,X]}{(X^2-E_1X+E_2)},$$

and $X^2 - E_1X + E_2 = (X - \alpha_1)(X - \alpha_2)$. It can instead be defined over the subring $\mathbb{Z}[E_1, E_2]$.

Gradings

State spaces are bigraded. For an anchored cobordism S,

 $qdeg(S) = -\chi(S) + 2 \cdot #dots + #anchor points.$

We have $\operatorname{qdeg}(S) = \operatorname{deg}(\langle S \rangle)$, where $\operatorname{deg}(\alpha_1) = \operatorname{deg}(\alpha_2) = 2$.

There is a second grading adeg coming from intersections with L.

- Label the anchor points $1, \ldots, m$ from bottom to top.
- Set $\operatorname{adeg}(S) = \sum_{i=1}^{m} (-1)^{i+\ell(i)}$

	label 1	label 2
i odd	1	$^{-1}$
i even	-1	1

Set R_{α} to be concentrated in annular degree zero.

Lemma

If S is a closed anchored surface, then $\langle S \rangle = 0$ or $\operatorname{adeg}(S) = 0$.

Extend adeg to anchored cobordisms (with boundary) and to state spaces $\langle C \rangle$.

Lemma

Let $S: C_0 \to C_1$ be an anchored cobordism. The map $\langle S \rangle : \langle C_0 \rangle \to \langle C_1 \rangle$ is bi-homogeneous of degree (qdeg(S), adeg(S)).

Ross Akhmechet (University of Virginia)

State spaces

We have neck-cutting relations for anchored surfaces:

which allow us to identify state spaces as follows.

State spaces

Theorem

Let $C \subset \mathcal{P}$ consist of n contractible circles and m non-contractible circles. Then the state space $\langle C \rangle$ is a free R_{α} -module of graded rank

$$(q+q^{-1})^n(a+a^{-1})^m.$$

Proof.

By neck-cutting, $\langle {\it C} \rangle$ is spanned by disk cobordisms where each

- \bullet disk with contractible boundary is disjoint from L and carries 0 or 1 dots ,
- disk with non-contractible boundary intersects *L* once, with label 1 or 2.

This forms a basis by computing the bilinear form.

Proof continued

Annular link homology

- We have a functor $\langle \rangle$: ACob $\rightarrow R_{\alpha}$ -ggmod from the category of anchored cobordisms into the category of bigraded R_{α} -modules.
- Applying $\langle \rangle$ to the cube of resolutions yields annular link homology.
- We can restrict to the sub-category ACob' consisting of cobordisms disjoint from *L* (all cobordisms in the cube of resolutions are of this form).
- Another functor \mathcal{G}_{α} : ACob' $\rightarrow R_{\alpha}$ -ggmod was constructed earlier.

Theorem

The functors $\langle - \rangle$: ACob' $\rightarrow R_{\alpha}$ -ggmod and \mathcal{G}_{α} : ACob' $\rightarrow R_{\alpha}$ -ggmod are naturally isomorphic.

Proof.

It suffices to check the four elementary cobordisms:

A., Equivariant annular Khovanov homology. arXiv:2008.00577

There are two types of sl(3) foams:

- oriented foams, first appearing in Khovanov's categorification of the *sl*(3) link polynomial [Kho04].
- unoriented foams, studied by Khovanov-Robert [KR21], related to graph colorings and gauge-theoretic constructions due to Kronheimer-Mrowka [KM19].

We consider both in the annular setting but will focus on oriented foams.

In sl(3) homology, circles in the plane are replaced by webs:

Cobordisms between circles are replaced by *foams* ("cobordisms" between webs). One needs modules $\langle \Gamma \rangle$ and functorial maps induced by foams.

Oriented sl(3) foams

An oriented sl(3) foam is a 2-dimensional CW complex with singularities of the form $Y \times [0, 1]$.

Two-dimensional cells (facets) must be oriented as follows

Oriented sl(3) foams

We will consider anchored foams:

- A foam $F \subset \mathbb{R}^3$ which intersects the line *L* transversely in the interior of its facets.
- Anchor points $F \cap L$ carry fixed labels in $\{1, 2, 3\}$.
- Facets may carry dots.

 $i, j, k \in \{1, 2, 3\}$

Foam evaluation

Via universal construction, an evaluation $\langle F \rangle$ of closed anchored foams yields state spaces $\langle \Gamma \rangle$ for webs $\Gamma \subset \mathcal{P}$ and functorial maps induced by foams with boundary. An *admissible coloring* of F is a function

```
c \colon \{ \mathsf{facets} \text{ of } F \} \to \{1,2,3\}
```

such that all three colors appear near singularities:

- Let adm(F) denote the set of admissible colorings.
- For $c \in adm(F)$ and $1 \le i \ne j \le 3$, let $F_{ij}(c)$ denote the union of i and j colored facets.
- $F_{ij}(c)$ is a closed, orientable surface in \mathbb{R}^3 .
- For $i \in \{1, 2, 3\}$, let $d_i(c)$ denote the number of dots on *i*-colored facets.

Foam evaluation

For $i \in \{1,2,3\}$, let $i', i'' \in \{1,2,3\}$ denote the complementary elements, so that $\{i,i',i''\} = \{1,2,3\}.$

We define an evaluation $\langle F \rangle \in \mathbb{Z}[x_1, x_2, x_3]$:

$$P(F,c) = \prod_{i=1}^{3} x_i^{d_i(c)}$$

$$Q(F,c) = \prod_{1 \le i < j \le 3} (x_i - x_j)^{\chi(F_{ij}(c))/2}$$

$$\widetilde{Q}(F,c) = \left(\prod_p (-1)^{c(p)-1} (x_{c(p)} - x_{\ell(p)'}) (x_{c(p)} - x_{\ell(p)''})\right)^{1/2}$$

$$\langle F, c \rangle = (-1)^{s(F,c)} \frac{P(F,c)\widetilde{Q}(F,c)}{Q(F,c)}$$

$$\langle F \rangle = \sum_{c \in adm(F)} \langle F, c \rangle$$

Foam evaluation

$$\widetilde{Q}(F,c) = \left(\prod_{p} (-1)^{c(p)-1} (x_{c(p)} - x_{\ell(p)'}) (x_{c(p)} - x_{\ell(p)''})\right)^{1/2}$$

• If $c(p) \neq \ell(p)$ for some anchor point p then $\langle F, c \rangle = 0$.

- We may assume every anchor point is colored according to its label.
- Then *p* contributes

$$(x_1 - x_2)(x_1 - x_3)$$
 if $c(p) = \ell(p) = 1$,
 $(x_1 - x_2)(x_2 - x_3)$ if $c(p) = \ell(p) = 2$,
 $(x_1 - x_3)(x_2 - x_3)$ if $c(p) = \ell(p) = 3$.

• If an(i) denotes the number of anchor points labeled *i*, then

$$\operatorname{an}(i) + \operatorname{an}(j) = |F_{ij}(c) \cap L|$$
 is even, and

$$\widetilde{Q}(F,c) = \prod_{1 \leq i < j \leq 3} (x_i - x_j)^{(\operatorname{an}(i) + \operatorname{an}(j))/2}.$$

Theorem

For a closed anchored foam F, we have $\langle F \rangle \in \mathbb{Z}[x_1, x_2, x_3]$. If F is disjoint from L, then the evaluation agrees with that of Mackaay-Vaz.

We can form state spaces $\langle \Gamma \rangle$ for webs $\Gamma \subset \mathcal{P}$ as explained earlier. State spaces carry a quantum grading: for a foam cobordism $V : \varnothing \to \Gamma$,

 $qdeg(V) = 2(#dots + #anchor points - \chi(V)) + \chi(\Gamma).$

We have local web isomorphisms for state spaces:

Using these local isomorphisms we obtain:

Theorem

For any web $\Gamma \subset \mathcal{P}$, the state space $\langle \Gamma \rangle$ is a free graded $\mathbb{Z}[x_1, x_2, x_3]$ -module of rank equal to the number of Tait colorings of Γ . Moreover, if Γ is contractible, then the graded rank of $\langle \Gamma \rangle$ equals the Kuperberg polynomial of Γ .

State spaces carry an annular grading, valued in

$$\Lambda := \frac{\mathbb{Z}w_1 \oplus \mathbb{Z}w_2 \oplus \mathbb{Z}w_3}{(w_1 + w_2 + w_3)}.$$

For a foam cobordism V, define

$$\operatorname{adeg}(V) = \sum_{p} s(p) w_{\ell(p)} \in \Lambda.$$

where $s(p) \in \{\pm 1\}$ is the oriented intersection number.

State spaces and annular homology

Given an oriented link $L \subset \mathbb{A} \times [0, 1]$, form the sl(3) chain complex in the standard way.

Applying $\langle - \rangle$ yields *equivariant annular sl*(3) *homology*. It carries homological, quantum, and annular (Λ) gradings.

Remark

Queffelec-Rose [QR18] defined (non-equivariant) annular Khovanov-Rozansky sl(n) homology, and show it carries an action of sl(n). The Λ grading is expected from this point of view, but we do not have an sl(3) action in the equivariant setting.

Unoriented *sl*(3) foams were studied by Khovanov-Robert [KR21]. They are a combinatorial counterpart to gauge-theoretic constructions introduced by Kronheimer-Mrowka [KM19].

Unoriented sl(3) foams are cobordisms between trivalent planar graphs. They may have singularities of the form

We also extend Khovanov-Robert foam evaluation to the anchored setting.

Thank You!

Marta M. Asaeda, Józef H. Przytycki, and Adam S. Sikora. Categorification of the Kauffman bracket skein module of *I*-bundles over surfaces. *Algebr. Geom. Topol.*, 4:1177–1210, 2004.

Michael Ehrig, Daniel Tubbenhauer, and Paul Wedrich. Functoriality of colored link homologies. *Proc. Lond. Math. Soc. (3)*, 117(5):996–1040, 2018.

Mikhail Khovanov. sl(3) link homology.

Algebr. Geom. Topol., 4:1045-1081, 2004.

Peter B. Kronheimer and Tomasz S. Mrowka. Tait colorings, and an instanton homology for webs and foams. J. Eur. Math. Soc. (JEMS), 21(1):55–119, 2019.

Mikhail Khovanov and Louis-Hadrien Robert. Foam evaluation and Kronheimer-Mrowka theories. *Adv. Math.*, 376:107433, 2021.

Daniel Krasner. Equivariant sl(*n*)-link homology. *Algebr. Geom. Topol.*, 10(1):1–32, 2010.

Marco Mackaay and Pedro Vaz. The universal sl₃-link homology. Algebr. Geom. Topol., 7:1135–1169, 2007.

Hoel Queffelec and David E. V. Rose. Sutured annular Khovanov-Rozansky homology. *Trans. Amer. Math. Soc.*, 370(2):1285–1319, 2018.

Louis-Hadrien Robert and Emmanuel Wagner. A closed formula for the evaluation of foams. *Quantum Topol.*, 11(3):411–487, 2020.

Hao Wu.

Equivariant colored $\mathfrak{sl}(N)$ -homology for links.

J. Knot Theory Ramifications, 21(2):1250012, 104, 2012.