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The Baum-Connes conjecture

Let G be a second countable locally compact group. The Baum-Connes
conjecture asserts that the assembly map

µ : K top
∗ (G) → K∗(C

∗
r (G))

is an isomorphism.

Here
K top

∗ (G) = KG
∗ (EG) = lim−→

X⊂EG,X G-compact

KKG
∗ (C0(X ),C)

is the equivariant K -homology of the universal proper G-space.

The conjecture is true in many cases - no counterexample is known.

What happens if G is a locally compact quantum group?
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The framework

Meyer and Nest reformulated the Baum-Connes conjecture using the language
of triangulated categories and derived functors (2004, 2006). This yields

▶ a better understanding of the (classical) conjecture

▶ a framework to define and study assembly maps in other situations

In fact, one of the motivations for their work was to extend the Baum-Connes
machinery to the realm of quantum groups.

Based on their approach, Meyer and Nest formulated and proved an analogue
of the Baum-Connes conjecture for duals of compact groups (2007).
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Equivariant Kasparov theory

Let G be a locally compact group.

Equivariant Kasparov theory defines an additive category KKG , with

▶ objects all separable G-C ∗-algebras

▶ morphism sets the bivariant Kasparov K -groups KKG(A,B)

▶ the composition of morphisms

KKG(A,B)×KKG(B ,C ) → KKG(A,C )

given by Kasparov product.
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Structure as a triangulated category

The category KKG is triangulated - this allows one to do homological algebra.

A triangulated category is an additive category togther with a translation
functor and a class of exact triangles satisfying certain axioms.

In the case of KKG , we have that

▶ the (inverse of the) suspension ΣA = C0(R)⊗A yields the translation
functor.

▶ the exact triangles are all diagrams in KKG isomorphic to mapping cone
triangles

ΣB → Cf → A → B

for equivariant ∗-homomorphisms f : A → B .

Every extension 0 → I → A → B → 0 of G-C ∗-algebras with a G-equivariant
completely positive contractive linear splitting defines an exact triangle.
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Compactly induced and compactly contractible algebras

A G-C ∗-algebra is called compactly induced if it is of the form indG
H (B) for an

H -C ∗-algebra B and some compact subgroup H ⊂ G.

Here the induced G-C ∗-algebra is defined as

indG
H (B) = {f ∈ C0(G,B) | f (th) = h · f (t) for all h ∈ H } ⊂ C0(G,B),

equipped with the G-action (g · f )(t) = f (g−1t).

A G-C ∗-algebra A is called compactly contractible if resGH (A) ∼= 0 ∈ KKH for
every compact subgroup H ⊂ G.

We write ⟨CI⟩ for the localising subcategory of KKG generated by all
compactly induced algebras and CC for the full subcategory of all compactly
contractible algebras. The category CC is automatically localising.
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Dirac triangles

Let G be a locally compact group.

▶ A morphism f : A → B in KKG is a weak equivalence if resGH (f ) is an
isomorphism in KKH (A,B) for all compact subgroups H ⊂ G.

▶ A ⟨CI⟩-simplicial approximation of a G-C ∗-algebra A is a weak
equivalence Ã → A with Ã ∈ ⟨CI⟩.

Theorem (Meyer-Nest 2006)

For every A ∈ KKG there exists a ⟨CI⟩-simplicial approximation Ã, unique up
to isomorphism. This fits into an exact triangle

ΣN → Ã → A → N ,

called Dirac triangle, with N ∈ CC.
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The Baum-Connes conjecture

Definition

Let A be a G-C ∗-algebra. Then G satisfy the Baum-Connes conjecture with
coefficients in A if the map

K∗(G ⋉r Ã) → K∗(G ⋉r A)

is an isomorphism.

Theorem (Meyer-Nest 2006)

This is equivalent to the usual formulation of the Baum-Connes conjecture.

Definition

The group G satisfy the strong Baum-Connes conjecture if ⟨CI⟩ = KKG .

Theorem (Higson-Kasparov 2001)

If G has the Haagerup property (is a-T-menable) then G satisfies the strong
Baum-Connes conjecture.
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What is... a quantum group?

Different people will give different answers...

The term“quantum group” is typically used for quantized universal enveloping
algebras. These originate from the study of the quantum inverse scattering
method developed in the 1980’s (Faddev-Reshetikhin-Takhtajan,
Drinfeld-Jimbo and others).

In this context, quantum groups are certain (classes of) Hopf algebras.

Independently, at around the same time, Woronowicz introduced the quantum
group SUq(2) and developed the theory of (what is now called) compact
quantum groups.

The general definition of a locally compact quantum group was later given by
Kustermans and Vaes.
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Pontrjagin duality

If G is a locally compact abelian group, then the dual of G is the group Ĝ of
all continuous group homomorphisms χ : G → U (1) ⊂ C.

Theorem (Pontrjagin duality)

The dual group of Ĝ is canonically isomorphic to G.

Example

The compact group G = S1 is Pontrjagin dual to the discrete group Ĝ = Z.
Using C ∗-algebras this can be expressed via the isomorphisms

C (S1) = C ∗(Z), C ∗(S1) ∼= C0(Z),

given by Fourier transformation.

In the spirit of noncommutative topology, if G is a (possibly nonabelian) locally
compact group, the correct replacement for the pair of Pontrjagin dual
(quantum) groups should be C0(G) and C ∗(G).
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Locally compact quantum groups

▶ Duality for compact groups - Tannaka (1938)

▶ Kac algebras - Kac-Vainerman, Enock-Schwartz (1973)

▶ SUq(2) and compact quantum groups - Woronowicz (1987)

▶ Examples of and constructions with locally compact quantum groups -
Woronowicz and others (since 1990)

Definition (Kustermans-Vaes 1999)

A locally compact quantum group is a C ∗-algebra H together with a
comultiplication ∆ : H → M (H ⊗H ) and left and right Haar integrals.
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Compact quantum groups

Definition (Woronowicz)

A compact quantum group is given by a unital C ∗-algebra S together with a
unital ∗-homomorphism ∆ : S → S ⊗ S such that

S
∆ //

∆

��

S ⊗ S

id⊗∆

��
S ⊗ S

∆⊗id // S ⊗ S ⊗ S

is commutative and

∆(S)(1⊗ S), (S ⊗ 1)∆(S)

are dense subspaces of S ⊗ S .

Every compact quantum group has a unique state ϕ, called Haar integral,
satisfying

(ϕ⊗ id)∆(x) = ϕ(x)1 = (id⊗ϕ)∆(x).
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Example: Compact groups

▶ If G is a compact group then S = C (G) is a compact quantum group.

The comultiplication ∆ : C (G) → C (G)⊗C (G) = C (G ×G) is given by

∆(f )(s, t) = f (st).

The Haar integral is given by integration with respect to (normalised) Haar
measure.

▶ Every compact quantum group for which S is a commutative C ∗-algebra
is of this form.
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Example: Discrete groups

▶ If G is a discrete group then S = C ∗
r (G) is a compact quantum group.

The comultiplication ∆ : C ∗
r (G) → C ∗

r (G)⊗ C ∗
r (G) is given by

∆(s) = s ⊗ s

for s ∈ G ⊂ CG ⊂ C ∗
r (G).

The Haar integral is given by

ϕ(x) = ⟨δe , xδe⟩

for x ∈ C ∗
r (G) ⊂ B2(L2(G)).

▶ In a similar way S = C ∗
f (G) is a compact quantum group.

▶ Every compact quantum group which is cocommutative is (essentially) of
this form.
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Example: The quantum group SUq(2)

Fix q ∈ [−1, 1] \ {0}.

Definition (Woronowicz 1987)

The C ∗-algebra C (SUq(2)) is the universal C ∗-algebra generated by elements
α and γ satisfying the relations

αγ = qγα, αγ∗ = qγ∗α, γγ∗ = γ∗γ,

α∗α+ γ∗γ = 1, αα∗ + q2γγ∗ = 1.

These relations are equivalent to saying that the fundamental matrix(
α −qγ∗

γ α∗

)
is unitary.
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∆

(
α −qγ∗

γ α∗

)
=

(
α −qγ∗

γ α∗

)
⊗

(
α −qγ∗

γ α∗

)
,

using“matrix multiplication”, that is,

∆(α) = α⊗ α− qγ∗ ⊗ γ

and similarly for the other generators.

For q = 1 one (re-)obtains in this way the C ∗-algebra C (SU (2)) of functions
on SU (2) together with the group structure of SU (2).
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Example: Free orthogonal quantum groups

Definition (Van Daele-Wang 1995)

Let n ∈ N. The C ∗-algebra C ∗
f (FO(n)) = Ao(n) of the free orthogonal

quantum group FO(n) is the universal C ∗-algebra with self-adjoint generators
uij , 1 ≤ i , j ≤ n and relations

n∑
k=1

uikujk = δij ,

n∑
k=1

ukiukj = δij .

▶ These relations are equivalent to saying that u = (uij ) is an orthogonal
matrix.

▶ The abelianisation of C ∗
f (FO(n)) is isomorphic to the algebra C (O(n)) of

functions on the orthogonal group O(n).
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Example: Free orthogonal quantum groups

The comultiplication ∆ : C ∗
f (FO(n)) → C ∗

f (FO(n))⊗ C ∗
f (FO(n)) is defined

by

∆

u11 · · · u1n

...
...

un1 · · · unn

 =

u11 · · · u1n

...
...

un1 · · · unn

⊗

u11 · · · u1n

...
...

un1 · · · unn

 .

Explicitly,

∆(uij ) =

n∑
k=1

uik ⊗ ukj .



Free orthogonal quantum groups and nonamenability

The reduced C ∗-algebra C ∗
r (FO(n)) is the image of C ∗

f (FO(n)) in the
GNS-representation of the Haar integral.

For n > 2 the free orthogonal quantum group FO(n) is not amenable, that is,
the canonical map

λ : C ∗
f (FO(n)) → C ∗

r (FO(n))

is not an isomorphism.

From non-amenability it follows that C ∗
f (FO(n)) and C ∗

r (FO(n)) are not
nuclear.
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The tensor category of representations

Definition

Let G be a compact quantum group and S = C (G). A unitary representation
of G on a Hilbert space H is a unitary U ∈ B(S ⊗H) such that

(∆⊗ id)(U ) = U13U23.

▶ There is an obvious way to define the direct sum and the tensor product of
representations.

▶ A representation is irreducible if it cannot be written as the direct sum of
two representations.

▶ Every irreducible representation of a compact quantum group is finite
dimensional.

▶ The finite dimensional representations of the compact quantum group G
form a C ∗-tensor category Rep(G).
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Meyer-Nest for quantum groups

Let G be a locally compact quantum group.

Equivariant Kasparov theory defines a triangulated category KKG , in a very
similar way to the group case.

In order to formulate an analogue of the Baum-Connes conjecture one also
needs a suitable choice of localising subcategories ⟨CI⟩ and CC.

The notion of a compact quantum subgroup, together with restriction and
induction, makes sense - but basic examples show that this is not quite the
right thing to look at in general...

For discrete quantum groups, a“good”choice of ⟨CI⟩ and CC have been
proposed by Arano-Skalski (2021).

For given (discrete) G one can also just try choices of CC and ⟨CI⟩ and see
what the corresponding assembly map gives!

If G is torsion-free then a natural choice of compactly induced G-C ∗-algebras
are those of the form C0(G)⊗A where A is any C ∗-algebra.

In this case a G-C ∗-algebra A is compactly contractible if A ∼= 0 in KK .
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Baum-Connes for free orthogonal quantum groups

For free orthogonal quantum groups the above choice of CC and ⟨CI⟩ works.

Theorem (V. 2009)

The free orthogonal quantum group FO(n) satisfies the strong Baum-Connes
conjecture.

Corollary

▶ The free orthogonal quantum group FO(n) is K -amenable.

▶ In particular, the natural map

K∗(C
∗
f (FO(n))) → K∗(C

∗
r (FO(n)))

is an isomorphism.

▶ The K -theory of FO(n) is given by

K0(C
∗(FO(n))) = Z

K1(C
∗(FO(n))) = Z.

for all n > 2.
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Proof of the corollary

▶ Write G = FO(n) and consider the Dirac element D ∈ KKG(C̃,C).
▶ Applying maximal resp. reduced crossed products to D yields a

commutative diagram

G ⋉f C̃

∼=

//

∼=

��

G ⋉f C = C ∗
f (G)

∼=

��
G ⋉r C̃

∼=

// G ⋉r C = C ∗
r (G)

in KK .

▶ The left vertical arrow is always an isomorphism.

▶ Strong BC implies that D is an isomorphism.

▶ Hence the horizontal arrows are isomorphisms.

▶ So the right arrow is an isomorphism in KK as well, and and hence
induces an isomorphism in K -theory.
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Proof of the corollary

▶ The crossed product G ⋉C0(G) is isomorphic to the compact operators K.

▶ Using a Koszul resolution argument one obtains an exact triangle

C0(G) // C̃ // ΣC0(G) // ΣC0(G)

which, after taking crossed products, induces an exact sequence

Z

∼=

//OO

0

K0(G ⋉ C̃) // 0

��
Z oo

∼=

K1(G ⋉ C̃) oo 0

▶ Using the counit ϵ : C ∗
f (G) → C we see that K0(G ⋉ C̃) ∼= K0(C

∗
f (G))

contains a direct summand Z.

▶ ...this yields the claim.
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Proof of the main result

We want to show that FO(n) satisfies strong BC.

Theorem (V. 2009, Arano-Kitamura-Kubota 2022)

The strong Baum-Connes property does not depend on G = FO(n) but only
on the tensor category Rep(G).

In fact, Arano-Kitamura-Kubota develop equivariant KK -theory for actions of
C ∗-tensor categories on C ∗-algebras.

Since Rep(FO(n)) ∼= Rep(SUq(2)) for n = −q − q−1 it suffices to show

Theorem (V. 2009)

The dual of SUq(2) satisfies the strong Baum-Connes conjecture.

The proof strategy for this is similar to the proof of Baum-Connes for the
classical group SL(2,C).
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