r-spin structures and applications

Nick Salter
Represents joint work with
Aaron Calderon and Pablo Portilla Cuadrado
Columbia University
February 16, 2021

r-spin structures

An r-spin structure is a. .

C smooth algebraic curve, K_{C} canonical (cotangent) bundle.
S topological surface, UTS unit tangent bundle.
$\mathbb{Z} / r \mathbb{Z}$ cover UTS \rightarrow UTS restricting to a connected cover $S^{1} \rightarrow S^{1}$
$\mathcal{S}(S)$: set of oriented SCC's / isotopy.

$$
\begin{aligned}
& \text { function } \phi: \mathcal{S}(S) \rightarrow \mathbb{Z} / r \mathbb{Z} \\
& \text { satisfying certain axioms } \\
& \text { "Winding number function" }
\end{aligned}
$$

Examples

- $r=2$: all over classical algebraic geometry
(special divisors on algebraic curves, e.g. Weierstrass points, bitangents)
- Smooth plane curves (e.g. $X^{d}+Y^{d}+Z^{d}=0$):

Adjunction formula: $K_{C}=\left.\mathcal{O}(d-3)\right|_{C}$.
Implies $\left.\mathcal{O}(1)\right|_{C}$ is a $d-3$ - spin structure.

- Generalizes to any algebraic surface with $\operatorname{Pic}(X)$ discrete, torsion-free.
- $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$ isolated plane curve singularity:

Milnor fibers carry a "Gelfand-Leray form" $\frac{d X}{f_{Y}}$
Nowhere-vanishing: $r=0$ (framing)

- (C, ω) translation surface
$C \backslash Z(\omega)$ carries framing induced by ω ("horizontal vector field")

Monodromy

Common setup: $p: \mathscr{X} \rightarrow B$ family (bundle) of Riemann surfaces
Topology (and more!) governed by monodromy:

$$
\rho: \pi_{1}(B) \rightarrow \operatorname{Mod}(\Sigma)
$$

Recall $\operatorname{Mod}(\Sigma)$ is the mapping class group: diffeos up to isotopy.

Given a loop in B, monodromy describes "twisting" of fiber when pushed all the way around.

Monodromy

Monodromy

Monodromy

Monodromy

Monodromy

Monodromy

Common setup: $p: \mathscr{X} \rightarrow B$ family (bundle) of Riemann surfaces
Topology (and more!) governed by monodromy:

$$
\rho: \pi_{1}(B) \rightarrow \operatorname{Mod}(\Sigma)
$$

Recall $\operatorname{Mod}(\Sigma)$ is the mapping class group: diffeos up to isotopy.

Given a loop in B, monodromy describes "twisting" of fiber when pushed all the way around.

Basic problem: describe (image of) ρ

Key observation: ρ detects
presence of r-spin structure

r-spin mapping class groups

There is action $\operatorname{Mod}(\Sigma) \circlearrowright\{r S S\}$

Define $\operatorname{Mod}(\Sigma)[\phi]$ as the stabilizer of $\phi \in\{r S S\}$.

In the presence of a canonical r-spin structure:

$$
\rho: \pi_{1}(B) \rightarrow \operatorname{Mod}(\Sigma)[\phi]
$$

To understand monodromy, need technology to show that ρ surjects.

$$
\text { Need generators for } \operatorname{Mod}(\Sigma)[\phi]
$$

Main theorem

Theorem (Calderon - S.): For $g \geq 5$, any framing $\phi, \operatorname{Mod}(\Sigma)[\phi]$ is generated by finitely many Dehn twists.

Simple generating sets

These come in a vast array of possibilities:
Start with the E_{6} configuration

Now perform any sequence of "stabilizations"

The result generates the associated framed mapping class group!

Linear systems on toric surfaces

Setup: X a smooth toric surface (e.g. $\mathbb{C P}^{2}, \mathbb{C P}^{1} \times \mathbb{C P}^{1}$)
L an ample line bundle (e.g. $\mathcal{O}(d)$ on $\mathbb{C P}^{2}$)
\mathscr{X} the family of smooth sections of L (e.g. smooth deg. d plane curves)

Theorem (S.): If the generic section is not hyperelliptic, then the monodromy of this family is $\operatorname{Mod}(\Sigma)[\phi]$ for ϕ the r-spin structure associated to the maximal root of the adjoint line bundle $K_{X} \otimes L$.
(e.g. $r=d-3$ for deg.- d plane curves)

A word on the proof

Part 1: Build a model "reference fiber", and construct a sufficiently large supply of Dehn twists in the monodromy.

Crétois-Lang: Build polygonal models for reference fibers in toric surfaces, using methods of tropical geometry

Part 2: Invoke the Main Theorem to conclude this collection generates the r-spin mapping class group.

Question (Donaldson, '00): Which curves can be the vanishing cycles associated to nodal degenerations?

Answer (S.): A curve $c \subset \Sigma$ is a vanishing cycle if and only if it satisfies $\phi(c)=0$

For instance, this configuration is prohibited:

Proof: Associate VC's to Dehn twists in the monodromy; classify the latter

Translation surfaces

Algebraic geometry
Geometric geometry
(X, ω): X Riemann surface, ω a holomorphic 1-form

Surface with atlas of charts to \mathbb{C}, transitions $z \mapsto z+c$ (translations)

$$
\left(X^{3}+Y^{4}=1, \frac{d X}{Y^{3}}\right)
$$

These are the same thing!

Strata

A stratum parameterizes all translation surfaces of the same "geometric type"

Every differential has 2g-2 zeroes (with multiplicity). Geometry: cone points of flat metric
$\kappa=\left\{\kappa_{1}, \ldots, \kappa_{n}\right\}$: partition of $2 \mathrm{~g}-2$

Stratum $\mathscr{H} \Omega(\kappa)$: all translation surfaces with cone angle set κ

Period coordinates: each $\mathscr{H} \Omega(\kappa)$ is a complex orbifold of dimension $2 \mathrm{~g}+\mathrm{n}-1$

Translation surfaces are framed

As remarked above, $C \backslash Z(\omega)$ carries the non-vanishing 1 -form ω and hence is framed.

Monodromy of strata

Theorem (Calderon - S.):

Fix $\mathrm{g} \geq 5, \kappa$ partition of $2 \mathrm{~g}-2$, and $\mathscr{H} \subseteq \mathscr{H} \Omega(\kappa)$ "non-hyperelliptic"*. Then

$$
\rho_{\mathscr{H}}: \pi_{1}(\mathscr{H}) \rightarrow \operatorname{Mod}(\Sigma)[\phi]
$$

is surjective. Here, ϕ is the framing associated to the horizontal vector field.

Corollaries:

- Classification of components over Teichmüller space
- Action on relative periods
- Which curves can be cylinders? Which arcs can be saddles?
- Starting point for study of $\pi_{1}(\mathscr{H})$
*: this is the generic case (hyperelliptic is classically understood)

