

Taut foliations from left orders, in Heegaard genus two

Sarah Dean Rasmussen

University of Cambridge

24 November 2020

Outline

- I. Motivation
- II. Left orders & Right orders
- III. Taut foliations
- IV. Heegaard foliations

I. Motivation

Why fundmental group left orders and taut foliations?

- A. Big picture
- B. Heegaard Floer homology
- C. L-spaces
- D. L-space conjecture
- E. Prior history

I. Motivation. Big picture

For duration of talk: *M* closed oriented 3-manifold.

Structures/Properties of M:

-interesting geodesics

-constrained 1-vertex triangulations

-taut foliations

-tight contact structures

Invariants of M: -volume - $H_1(M)$ - $\pi_1(M)$ -gauge/Floer-theoretic: HF/HM/ECH, HI.

I. Motivation. Big picture

For duration of talk: *M* closed oriented 3-manifold.

Structures/Properties of M:

-interesting geodesics

-constrained 1-vertex triangulations

- -taut foliations
- -tight contact structures

Invariants of
invariants of
-volume-volume- $H_1(M)$ (cycles / boundaries)- $H_1(M)$ - $\pi_1(M)$ - $\pi_1(M)$ -????-gauge/Floer

```
Invariants of M:

-volume

-H_1(M)

-\pi_1(M)

-gauge/Floer-theoretic:

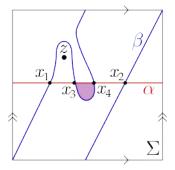
HF/HM/ECH, HI.
```

I. Motivation. Heegaard Floer homology (Ozsváth-Szabó, 2000)

$$\begin{split} M &= U_{\alpha} \cup_{\Sigma} U_{\beta}. & \text{Heegaard diagram } \mathcal{H} = (\Sigma, \alpha, \beta, z). \\ HF(M) &:= HF_{\mathsf{Lag}}(\mathbb{T}_{\alpha}, \mathbb{T}_{\beta}), \quad \mathbb{T}_{\alpha}, \mathbb{T}_{\beta} \subset \mathsf{Sym}^{g(\Sigma)}(\Sigma). \\ & -CF(M) \text{ generated by points } \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta} \subset \mathsf{Sym}^{g(\Sigma)}(\Sigma). \\ & -\text{Differentials: psuedoholomorphic Whitney disks.} \end{split}$$

Example:

$$\begin{aligned} &\widehat{CF}(M,\mathfrak{s}_1): \quad \langle x_1, x_4 \rangle \xrightarrow{x_4 \mapsto x_3} \langle x_3 \rangle, \\ &\widehat{CF}(M,\mathfrak{s}_2): \quad \langle x_2 \rangle, \\ &\implies \widehat{HF}(M,\mathfrak{s}_1) \simeq \widehat{HF}(M,\mathfrak{s}_2) \simeq \mathbb{Z}. \end{aligned}$$

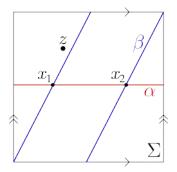


I. Motivation. Heegaard Floer homology (Ozsváth-Szabó, 2000)

$$\begin{split} M &= U_{\alpha} \cup_{\Sigma} U_{\beta}. & \text{Heegaard diagram } \mathcal{H} = (\Sigma, \alpha, \beta, z). \\ HF(M) &:= HF_{\mathsf{Lag}}(\mathbb{T}_{\alpha}, \mathbb{T}_{\beta}), \quad \mathbb{T}_{\alpha}, \mathbb{T}_{\beta} \subset \mathsf{Sym}^{g(\Sigma)}(\Sigma). \\ & -CF(M) \text{ generated by points } \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta} \subset \mathsf{Sym}^{g(\Sigma)}(\Sigma). \\ & -\text{Differentials: psuedoholomorphic Whitney disks.} \end{split}$$

Example:

$$\begin{aligned} &\widehat{CF}(M,\mathfrak{s}_1): \quad \langle x_1 \rangle, \\ &\widehat{CF}(M,\mathfrak{s}_2): \quad \langle x_2 \rangle, \\ &\implies \widehat{HF}(M,\mathfrak{s}_1) \simeq \widehat{HF}(M,\mathfrak{s}_2) \simeq \mathbb{Z}. \end{aligned}$$



I. Motivation. L-spaces

If *M* is a $\mathbb{Q}HS$ $(b_1(M) = 0)$, then the smallest $\widehat{HF}(M)$ can be is $\widehat{HF}(M) = \bigoplus_{\mathfrak{s}\in \operatorname{Spin}^c(M)} \widehat{HF}(M,\mathfrak{s}) \simeq \bigoplus_{h\in H_1(M)} \mathbb{Z} \simeq \mathbb{Z}^{|H_1(M)|}.$

Definition (L-space). *M* is an *L-space* if $b_1(M) = 0$ and rank $\widehat{HF}(M) = |H_1(M)|$, or equivalently, if $HF_{red}(M) = 0$.

Example L-spaces:

- -Lens spaces.
- -Branched double covers of alternating knots.

I. Motivation. L-space conjecture

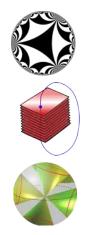
Conjecture. (Boyer-Gordon-Watson, Juhász, Ozsváth-Szabó, Némethi)

M is **not** an L-space \iff ...

 $\pi_1(M)$ has a left order (LO). $g_1 > g_2 \iff hg_1 > hg_2$

M admits a co-oriented taut foliation (CTF).

(if M a neg def graph manifold) M links a nonrational singularity.



I. Motivation. Prior history

Prior interest in relating left/circular orders and taut foliations

- -Thurston
- -Gabai
- -Calegari

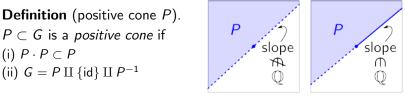
II. Left Orders and Right Orders

 $\mathsf{LO}=\mathsf{Left} \text{ order}. \quad \mathsf{RO}=\mathsf{Right} \text{ order}.$

- A. Definitions and positive cones
- B. Real line actions.

II. LOs & ROs. Definitions and positive cones

G nontrivial group. LO = Left order. RO = Right order.



 $G = \mathbb{Z} \oplus \mathbb{Z}$

Theorem (classical). *G* countable nontrivial group. *G* is LO \iff *G* admits faithful \mathbb{R} -action, $\rho : G \rightarrow \text{Homeo}_+ \mathbb{R}$.

 $\begin{array}{l} (\Rightarrow): Dynamically \ realized \ action \ \rho. \\ \mbox{Choose} \ \rho(\cdot)(0): G \hookrightarrow \mathbb{R} \ \mbox{dense} \ \mbox{and order-preserving:} \\ \rho(g)(0) < \rho(h)(0) \iff g <_{\rm L} h. \\ \mbox{Set} \ \rho(g)(\rho(h)(0)) := \rho(gh)(0) \quad \forall g, h \in G. \\ \mbox{Extend by limit points.} \end{array}$

 $(\Leftarrow) : Lexicographical ordering.$ Choose ordering on $\mathbb{Q} \subset \mathbb{R}$: $\mathbb{Q} = \{q_1, q_2, \dots, \}.$ For $g \neq h$, to see if $g <_{\mathrm{L}} h$, ask "is $\rho(g)(q_1) < \rho(h)(q_1)$?" If $\rho(g)(q_i) = \rho(g)(q_i) \ \forall i \leq k$, ask "is $\rho(g)(q_{k+1}) < \rho(h)(q_{k+1})$?,"

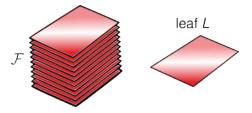
Theorem (Boyer-Rolfsen-Wiest). If M is prime, closed, oriented, then $\pi_1(M)$ is LO if $\pi_1(M)$ admits *any* nontrivial \mathbb{R} -action.

III. Taut foliations (CTFs)

- $\mathsf{CTF}=\mathsf{Cooriented} \ \mathsf{taut} \ \mathsf{foliation}.$
- A. Foliations
- B. Taut foliation definition
- C. $\pi_1(M)$ LOs from CTFs on M?
- D. Known constructions of taut foliations
- E. Transversely foliated bundles + holonomy reps

III. CTFs. Foliations

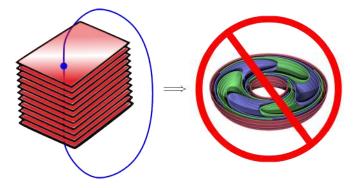
Definition (product foliation). A codim-k product foliation \mathcal{F} on X is a decomposition $\mathcal{F} = \coprod_{b \in B} \pi^{-1}(b)$ of X into fibers $\pi^{-1}(b) \cong L$ of a trivial fibration $\pi : X \to B$ over a k-dim base B. $(X \cong L \times B)$ The fibers $\pi^{-1}(b)$, for $b \in B$, are called the *leaves* of \mathcal{F} .



Definition (foliation). A codimension-k foliation \mathcal{F} on X^n is a globally compatible decomposition of X into leaves that looks locally like the product foliation associated to the trivial fibration $\mathbb{R}^n \to \mathbb{R}^k$.

Coorientation on $\mathcal{F} \leftrightarrow$ globally compatible coorientations on \mathbb{R}^k s.

Definition (taut foliation). A codimension-1 foliation \mathcal{F} on a closed oriented 3-manifold M is called *taut* if for every $x \in M$, there is a closed *transversal* containing x, i.e. a closed curve transverse to \mathcal{F} .



Convention. All foliations cooriented unless otherwise specified: CTF.

Given a CTF \mathcal{F} on M ...

1. If $e(\mathcal{F}) = 0$, then $\pi_1(M)$ is LO. (Calegari-Dunfield) \mathcal{F} CTF \rightsquigarrow faithful "universal S^1 action": $\rho_{\mathcal{F}}^{S_1} : \pi_1(M) \rightarrow \text{Homeo}_+S^1$. $e(\rho_{\mathcal{F}}^{S_1}) = e(\mathcal{F}) = 0 \implies \rho_{\mathcal{F}}^{S_1}$ lifts to \mathbb{R} -action, $\pi_1(M) \rightarrow \text{Homeo}_+\mathbb{R}$.

2. If
$$\mathcal{F}$$
 is \mathbb{R} -covered, then $\pi_1(M)$ is LO.
Leafspace $\Lambda_{\mathcal{F}}$ of CTF \mathcal{F} given by $\widetilde{M} \xrightarrow{|eaf \mapsto point} \Lambda_{\mathcal{F}}$.
 \mathcal{F} \mathbb{R} -covered means leafspace $\Lambda_{\mathcal{F}} \cong \mathbb{R}$.
 $\pi_1(M)$ acts on $\widetilde{M} \implies \pi_1(M)$ acts on $\Lambda_{\mathcal{F}} \cong \mathbb{R}$.

- 1. Dunfield: $e(\mathcal{F})$ has approx uniform random distribution in $H^2(M)$.
- 2. R-covered foliations mostly only known for Seifert-fibered manifolds.
- * LOs \rightarrow CTFs: ???? (previously unknown)

Thurston: Slitherings around S^1 .

Gabai: Intersections with \mathbb{R} -bundles over *M*?

Calegari: Generalising Ziggurats (Jankins-Neumann-Naimi).

Only 2 known types of strategies for constructing CTFs on M prime.

- 1. *M* arbitrary: branched surfaces.
- -Sutured hierarchy (but requires $b_1(M) > 0$) (Gabai),
- -Knot exteriors (Roberts et al),
- -Foliar orientations on one-vertex triangulations (Dunfield).
- 2. *M* Seifert fibered: fiber-transverse foliations.
- -Fiber-transverse foliation on S^1 -fibration over orbifold.
- -For appropriate graph manfiolds, such foliations can be glued together.

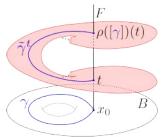
Fiber-transverse foliation analog for arbitrary M?

Definition (complete transversely foliated bundle).

An *F*-bundle $\pi: E \rightarrow B$ with foliation \mathcal{F}

is a complete transversely foliated bundle if for each leaf $L \subset E$ of \mathcal{F} , (*i*) (transversality) L is transverse to each fiber $\pi^{-1}(b) \cong F$ of E, and (*ii*) (completeness) π restricts on L to a covering map $\pi|_L : L \to B$.

Definition (holonomy representation). For a basepoint $x_0 \in B$ and base-fiber embedding $F \xrightarrow{\sim} \pi^{-1}(x_0) \subset E$, \mathcal{F} has holonomy representation $\operatorname{Hol} \mathcal{F} = \rho : \pi_1(B, x_0) \to \operatorname{Homeo}_+ F$, $\rho([\gamma]) : t \mapsto \tilde{\gamma}^t(1), \ \tilde{\gamma}^t : I \to E$ lifts $\gamma : (I, \partial I) \to (B, x_0)$ with $\tilde{\gamma}^t(0) = t$.



Proposition (classical).

Given an oriented manifold F, a closed oriented based manifold (B, x_0) , and a representation $\rho : \pi_1(B, x_0) \to \operatorname{Homeo}_+ F$, one can construct

the complete transversely foliated F-bundle E_{ρ} with transverse foliation \mathcal{F}_{ρ} of holonomy representation ρ , by setting

$$E_{\rho} := (\widetilde{B} \times F)/(x,t) \sim (x \cdot g, \rho(g^{-1})(t)), \text{ for all } g \in \pi_1(B, x_0),$$

$$\pi : E_{\rho} \to B, \quad [(x,t)] \mapsto [x] \text{ for } (x,t) \in \widetilde{B} \times F.$$

$$\mathcal{F}_{\rho} := \prod_{t \in F} \widetilde{B} \times \{t\}/\sim,$$

for B the universal cover of B.

~ identifies each orbit of the diagonal action of $\pi_1(B)$ by deck transformations on \widetilde{B} and by ρ^{-1} on F.

Theorem (classical).

Complete transversely-foliated *F*-bundles over (B, x_0) are classified by their holonomy representation, up to isomorphism of foliated based *F*-bundles,

In other words, there is a bijection,

 $\begin{cases} \text{complete transversely-foliated} \\ F\text{-bundles over } (B, x_0) \end{cases} \\ & \text{foliated based bundles} \\ & \uparrow (\mathcal{F} \mapsto \text{Hol } \mathcal{F}) \\ & \left\{ \begin{array}{c} \text{representations} \\ \pi_1(B, x_0) \to \text{Homeo}_+ \mathcal{F} \end{array} \right\}. \end{cases}$

(For a Seifert fibered space M, this gives a correspondence between CTFs on M and \mathbb{R} -actions of $\pi_1(M)$, up to suitable equivalence.)

Classification of Seifert Fibered Spaces with CTFs:

genus > 0 case: Eisenbud-Hirsch-Neumann. genus 0 case: Jankins-Neumann, Naimi; Calegari-Walker.

Theorem (J-N & N / C-W)

If $M = M(\frac{\beta_0}{\alpha_0}; \frac{\beta_1}{\alpha_1}, \dots, \frac{\beta_n}{\alpha_n})$ is Seifert fibered over S^2 , then M admits a CTF $\iff \pi_1(M)$ admits an $LO \iff$

$$\min_{k>0} -\frac{1}{k} \left(-1 + \sum \left\lceil \frac{\beta_i}{\alpha_i} k \right\rceil \right) < 0 < \max_{k>0} -\frac{1}{k} \left(1 + \sum \left\lfloor \frac{\beta_i}{\alpha_i} k \right\rfloor \right).$$

Theorem (–R)

An analogous classification result holds for graph manifolds.

IV. Heegaard foliations

- A. Main results.
- B. Setup
- C. Subtleties
- D. Foliation templates
- E. Handle-body foliations
- F. Singularities
- G. Singularity cancellation
- H. Extremal regions

IV. Heegaard foliations

Definition (efficient Heegaard diagram).

A Heegaard diagram \mathcal{H} for M is *efficient* if in its associated presentation for $\pi_1(M)$, no proper nontrivial subword of a relator is trivial in $\pi_1(M)$.

Theorem (—R)

Suppose M is a prime closed oriented 3-manifold with an efficient Heegaard diagram of genus ≤ 2 . Then for any left order $>_{L}$ on $\pi_1(M)$, one can use \mathcal{H} and $>_{L}$ to build a cooriented taut foliation on M called a Heegaard foliation.

Corollary

Suppose M is a prime closed oriented 3-manifold with an efficient Heegaard diagram of genus ≤ 2 . If $\pi_1(M)$ is left-orderable, then M is not an L-space.

IV. Heegaard foliations. Setup

$$\rho' : \pi_{1}(M) \to \operatorname{Homeo}_{+} \mathbb{R}, \qquad \rho(g)(0) < \rho(h)(0) \iff g <_{L} h.$$

$$\mathcal{H} = (\Sigma, \alpha, \beta) \text{ efficient Heegaard diagram for } M,$$

$$\iota : \Sigma \hookrightarrow M = U_{\alpha} \cup_{\Sigma} U_{\beta}.$$

$$\rho := \rho' \circ \iota_{*} : \pi_{1}(\Sigma) \to \operatorname{Homeo}_{+} \mathbb{R}$$

$$\rightsquigarrow \quad E_{\rho} \cong \Sigma \times \mathbb{R}, \quad \mathcal{F}_{\rho} \text{ with Hol } \mathcal{F}_{\rho} = \rho.$$

$$F_{\beta} \text{ foliation by disks} \qquad U_{\alpha}$$

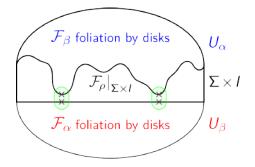
$$F_{\beta} \operatorname{R-transverse}$$

$$\cdots$$

$$F_{\beta} \operatorname{foliation by disks} \qquad U_{\alpha}$$

$$F_{\alpha} \text{ foliation by disks} \qquad U_{\beta}$$

IV. Heegaard foliations. Subtleties



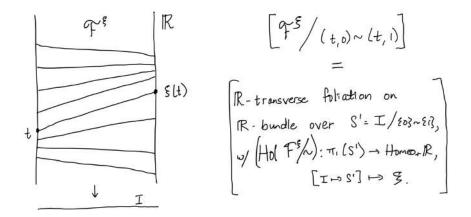
Subtleties:

- 1. The \mathbb{R} -transverse foliation \mathcal{F}_{ρ} must admit sections $\mathcal{F}_{0,\alpha}$ and $\mathcal{F}_{0,\beta}$ that respectively extend to \mathcal{F}_{α} and \mathcal{F}_{β} . \implies Foliation Templates.
- 2. Singularities must be contained in special neighborhoods conducive to cancellation. \implies *Extremal regions*.

Example

x_0 . . . a_1 a_2 a_{g} α_{g} α_1 $|\alpha_2|$ > $\overline{\nu(\alpha_1)}$ $\nu(\alpha_{\rm g})$ $\overline{\nu(\alpha_2)}$ $\rho(a_1)$ $\rho(a_2)$ $\rho(a_{\rm g})$

 $\alpha_1, \ldots, \alpha_g$ freely homotopic to $\hat{\alpha}_1, \ldots, \hat{\alpha}_g \in \ker \rho = \ker [\iota_* : \pi_1(\Sigma) \to \pi_1(M)]$ **Definition.** To any $\xi \in \text{Homeo}_+ \mathbb{R}$, we associate the codim-1, 2-dim *suspension foliation* \mathcal{F}^{ξ} on $I \times \mathbb{R}$, rel boundary. $I \times R$ regarded as mapping cylinder for ξ . {Leaves of \mathcal{F}^{ξ} } = {orbits of points under ξ }.



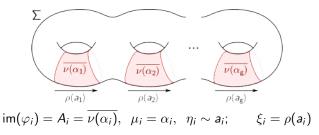
Definition. A foliation template $T = (\varphi, \xi)$ of length n on Σ is an ordered pair of ordered n-tuples with respective i^{th} entries

(i) template charts $\varphi_i : S^1 \times [-\frac{1}{2}, +\frac{1}{2}] \to A_i \subset \Sigma$

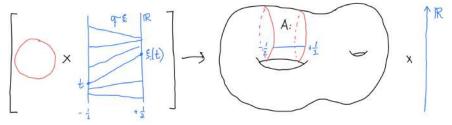
determining the *i*th template triple (A_i, μ_i, η_i) :

- template pinched annulus $A_i \subset \Sigma$ (pairwise disjoint interiors),
- template curve $\mu_i = \operatorname{core}(A_i)$,
- local coorientation $\eta_i : I \to \Sigma$, coorientation for μ_i ;

(*ii*) local holonomy $\xi_i \in \text{Homeo}_+ \mathbb{R}$.



Definition. Given $T = (\varphi, \xi)$ with triple (\mathbf{A}, μ, η) , (recall $A_i = \overline{\nu}(\mu_i)$), define the *ith suspension foliation of* T, \mathcal{F}_T^i , on $A_i \times \mathbb{R}$ by associating the foliation $S^1 \times \mathcal{F}_i^{\xi_i}$ to $A_i \times \mathbb{R}$ via $\varphi_i : S^1 \times [-\frac{1}{2}, +\frac{1}{2}] \to A_i \subset \Sigma$.

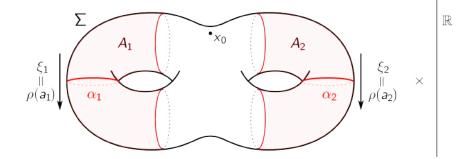


Definition. The global *T*-foliation \mathcal{F}_T is then given by

$$\mathcal{F}_{\mathcal{T}} := (\coprod_{i=1}^{n} \mathcal{F}_{\mathcal{T}}^{i}) \ \cup \ \mathcal{F}_{\widehat{\Sigma} \times \mathbb{R}}^{\mathrm{prod}} \quad \text{on} \quad \Sigma \times \mathbb{R},$$
for $\widehat{\Sigma} := \Sigma \setminus \coprod_{i=1}^{n} \overset{\circ}{\mathcal{A}}_{i}$
and $\mathcal{F}_{\widehat{\Sigma} \times \mathbb{R}}^{\mathrm{prod}}$ the product foliation on $\widehat{\Sigma} \times \mathbb{R}$ by $\widehat{\Sigma} \times \{\mathrm{pt}\}.$

IV. Heegaard foliations. Foliation templates. *T*-foliations genus 2

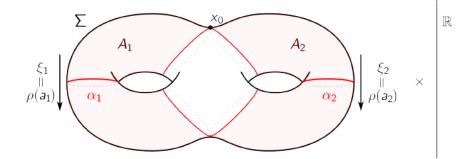
$$\mathcal{T}_{\alpha} := (\boldsymbol{\varphi}, \boldsymbol{\xi})$$
 with triple $(\mathbf{A}, \boldsymbol{\alpha}, \boldsymbol{\eta})$. (so $A_i = \overline{\nu}(\alpha_i)$).



$$egin{aligned} \left< \mathsf{a}_1, \mathsf{a}_2 \right> / \ker
ho = \pi_1(\Sigma) / \ker
ho & \Longrightarrow \ \mathcal{F}_{\mathcal{T}_lpha} = \mathcal{F}_
ho. \end{aligned}$$

IV. Heegaard foliations. Foliation templates. *T*-foliations genus 2

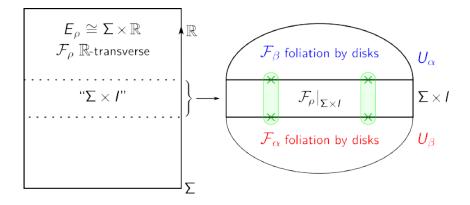
$$\mathcal{T}_{\alpha} := (\boldsymbol{\varphi}, \boldsymbol{\xi})$$
 with triple $(\mathbf{A}, \boldsymbol{\alpha}, \boldsymbol{\eta})$. (so $A_i = \overline{\nu}(\alpha_i)$).



$$egin{aligned} \left< \mathsf{a}_1, \mathsf{a}_2 \right> / \ker
ho = \pi_1(\Sigma) / \ker
ho & \Longrightarrow \ \mathcal{F}_{\mathcal{T}_lpha} = \mathcal{F}_
ho. \end{aligned}$$

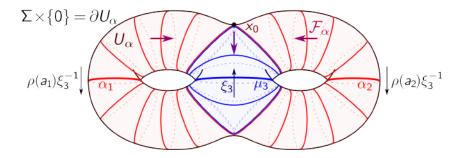
IV. Heegaard foliations. Foliation templates. T-foliations genus 2

$$T_{\alpha} := (\varphi, \xi)$$
 with triple $(\mathbf{A}, \alpha, \eta)$. (so $A_i = \overline{\nu}(\alpha_i)$).
Recall:



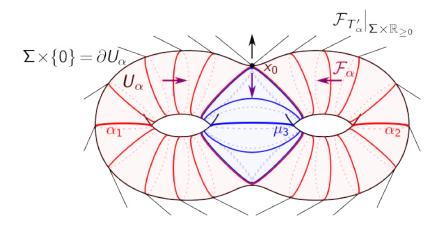
1. The \mathbb{R} -transverse foliation \mathcal{F}_{ρ} must admit sections $\mathcal{F}_{0,\alpha}$ and $\mathcal{F}_{0,\beta}$ that respectively extend to \mathcal{F}_{α} and \mathcal{F}_{β} . \implies Foliation Templates.

$$\mathcal{F}_{\alpha}|_{\partial U_{\alpha}} := \mathcal{F}_{\mathcal{T}'_{\alpha}}|_{\Sigma \times \{0\}} = "\mathcal{F}_{\alpha,0}".$$

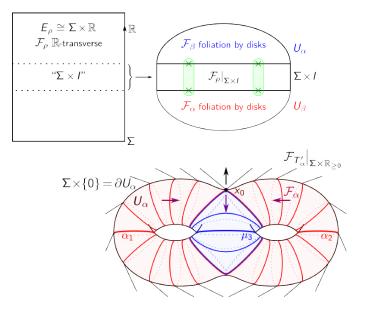


$$\begin{split} &a_1, a_2 >_{\scriptscriptstyle \mathrm{L}} 1 \implies \rho(a_1)(0), \ \rho(a_2)(0) > 0, \\ &\xi_3 : t \mapsto t + \varepsilon \implies \xi_3(0) > 0, \\ & \text{Coorientation of } \mathcal{F}_\alpha = \eta_i^{-1} = -(\text{Coorientation of } \mu_i). \end{split}$$

IV. Heegaard foliations. Singularities

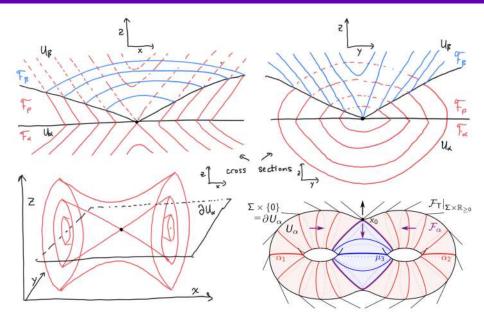


IV. Heegaard foliations. Singularities



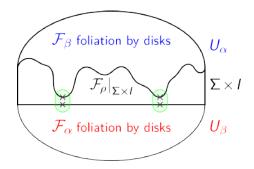
IV. Heegaard foliations.

Singularity cancellation



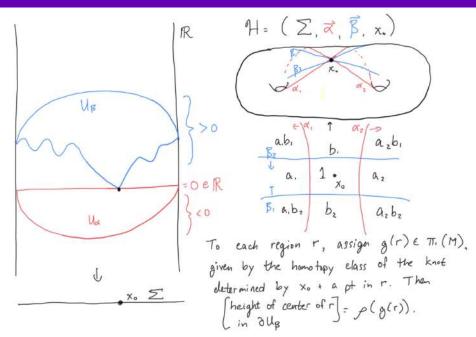
IV. Heegaard foliations. Extremal regions

Recall:



2. Singularities must be contained in special neighborhoods conducive to cancellation. \implies *Extremal regions*.

IV. Heegaard foliations. Extremal regions



Definition (Heegaard foliation)

We call the cooriented taut foliation we have just now constructed a *Heegaard foliation*.

Theorem (-R)

Suppose *M* is a prime closed oriented 3-manifold with an efficient Heegaard diagram of genus ≤ 2 . Then for any left order $>_{\rm L}$ on $\pi_1(M)$, one can use \mathcal{H} and $>_{\rm L}$ to build a Heegaard foliation on *M*.

Theorem (—R)

Suppose *M* is a prime closed oriented 3-manifold with an efficient Heegaard diagram of genus ≤ 2 . Then for any left order $>_{L}$ on $\pi_{1}(M)$,

Thanks!