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Notation

M smooth manifold

Diff(M) orientation-preserving compactly-supported
diffeomorphisms M → M, a topological group

Diff0(M) the component of Diff containing the identity

Today: Interested in the algebra of Diff0(S), surface S

Results/techniques of talk also apply to Homeo0(S).



Main theme of the talk

S an orientable closed surface genus ≥ 1. There is an exact
sequence

Diff0(S)→ Diff(S)→ Mcg(S)

Mcg(S) is countable, has uncountably many normal subgroups
well understood

Diff0(S) is uncountable, has only two normal subgroups
poorly understood

Despite these key differences we introduce Mcg(S)-inspired tools
for Diff0(S).



Background: fragmentation norm

f ∈ Diff0(M) define

supp(f ) := {x ∈ M : fx 6= x}
Say f is disk supported if supp(f ) ⊂ B open disk B.

Lemma (Fragmentation Lemma)

∀f ∈ Diff0(M) ∃f1, . . . , fn ∈ Diff0(M) such that f = f1 . . . fn and
each fi disk supported.

i.e. the disk-supported maps generate Diff0(M)

Definition (Fragmentation norm frag)

frag(f ) is the word length of f with the disk-supported maps as
the generating set i.e.

frag(f ) := min{n : f1, . . . , fn as above}

and frag(id) := 0.



Fragmentation norm isn’t easy to understand

frag(f ) = 0 iff f = id
frag(f ) = 1 iff f 6= id and f disk supported
frag(f ) ≥ 2 iff f not disk supported

What more can we say . . . ?
In general computing the fragmentation norm is poorly understood.

Example

M = S1 × (−1, 1) point push around the core curve S1 × {0}.

f

How does frag(f n) with respect to n? It’s at most linear, but is it
linear? Sublinear? Bounded?

Answer: later on in the talk.



Another norm: the commutator length

Mather, Thurston: Diff0(M) is perfect i.e. every element f is a
product of commutators [a, b] = aba−1b−1. Equivalently any
homomorphism of Diff0(M) to an abelian group has trivial image.

Homeo0(M) is also perfect. Both groups are simple too!

Thus we can also consider

Definition (Commutator length norm cl)

cl(f ) is the word length of f with respect to the generating set the
set of commutators, and cl(id) := 0

Natural Question

When is cl : Diff0(M)→ R a bounded function
i.e. when is Diff0(M) uniformly perfect?



Work of Burago–Ivanov–Polterovich

frag and cl are examples of conjugation-invariant norms on
Diff0(M)
For many M these norms are uniformly bounded.

Theorem (Burago–Ivanov–Polterovich)

Let M be one of the following

an open n-ball B,

an open annulus S1 × (−1, 1),

more generally a portable manifold e.g. open handlebody,

an n-sphere Sn, or

a closed, orientable 3-manifold.

Then for any conjugation-invariant norm ρ : Diff0(M)→ R there
exists C such that ∀f ∈ Diff0(M) we have ρ(f ) ≤ C .
Thus frag is bounded and Diff0(M) is uniformly perfect.

So frag on the annulus is uniformly bounded! Not obvious!



frag is natural in an algebraic sense

We obtain

Corollary (Burago–Ivanov–Polterovich)

Given a conjugation-invariant norm ρ : Diff0(M)→ R there exists
C such that ∀f we have ρ(f ) ≤ C frag(f ).

The proof is beautifully short. Write f = f1 . . . fn where n = frag(f )
and fi are disk supported. Then by the previous theorem ρ(fi ) ≤ C
for some C (hint: after conjugating fi they are supported in the
same ball, use conjugation invariance), so we’re done.

frag despite its purely topological definition is in fact intimately
related to the algebra of Diff0(M)

Natural Question

But is there M with frag unbounded on Diff0(M)?



More bounded examples

Theorem (Tsuboi)

Let M be an orientable closed smooth n-manifold with either

n ≥ 5, or

n = 4 such that M has a handlebody decomposition without
2-handles,

then Diff0(M) is uniformly perfect and frag is bounded.

We are left with dimensions 2 and 4:

Question

What about closed surfaces S with positive genus?
What about 4-dimensional M with 2-handles?



Main theorem

Let G be a perfect group. The stable commutator length of g ∈ G
is scl(g) := limn→∞

1
n cl(gn).

Theorem (Bowden–Hensel–W.)

Let S be a closed, orientable surface of genus ≥ 1. Then there
exists g ∈ Diff0(S) with scl(g) > 0. In particular Diff0(S) is not
uniformly perfect and frag is unbounded.

1 These are the first examples of closed smooth manifolds M
where Diff0(M) has unbounded fragmentation norm.

2 Our methods/results apply to Homeo0(S) too.

Strategy: Construct quasimorphisms to show scl(g) > 0 and cl
unbounded and deduce frag unbounded.

These quasimorphisms come from geometric group theory.



Quasimorphisms

Definition

Let G be a group. A map φ : G → R is a quasimorphism if ∃D ≥ 0
such that ∀g , h ∈ G we have

|φ(gh)− φ(g)− φ(h)| ≤ D.

This is a tool to show scl > 0 somewhere and hence cl unbounded.
Observe:

1 |φ(id)| ≤ D,

2 |φ[f , g ]| ≤ 7D, so commutators are bounded,

3 if φ is unbounded then ∃g ∈ G with φ(gn) linear in n,

4 such g has scl(g) > 0 hence G not uniformly perfect.

There is a converse called Bavard duality.



Source of quasimorphisms via hyperbolic geometry

To prove our theorem we need an unbounded quasimorphism. This
will come from an action of Diff0(S) by isometries on a hyperbolic
space C†(S), defined later.

Definition (Hyperbolicity)

A geodesic metric space X is hyperbolic if ∃δ ≥ 0 such that any
triangle formed of geodesics g1, g2, g3 satisfies g1 ⊂ Nδ(g2 ∪ g3).

Plays an important role in some breakthroughs of the past decade
Cremona group is not simple (Cantat–Lamy)
Virtual fibring/Haken conjecture in 3-manifolds (Agol, Wise)



Classification of isometries (think H2)

Define |f | := limn→∞
1
nd(x , f nx) asymptotic translation length.

Any isometry of a hyperbolic space is either

elliptic, |f | = 0 and has bounded diameter orbit, or

parabolic, |f | = 0 has unbounded diameter orbit, or

loxodromic, |f | > 0.

Diff0(S) acts by isometries on C†(S).

Af

Today: Loxodromic elements are the important ones.



Bestvina–Fujiwara condition for quasimorphisms

Here is a widely applicable and useful condition to produce many
unbounded quasimorphisms, which generalises that of
Epstein–Fujiwara and Brooks.

Theorem (Bestvina–Fujiwara, (BF ) condition)

Suppose G act by isometries on hyperbolic X with loxodromic
elements f , g ∈ G that are independent. Then there exists many
unbounded quasimorphisms on G .

Technical: Here we say that loxodromic f and g are independent if
there is a uniform bound L such that for any h ∈ G , hAf cannot
fellow travel Ag for further than L, where Af and Ag are the
“axes” of f and g .

Non-example: natural action of PSL2R on H2.
Example: natural action of PSL2Z on H2.



(BF ) condition

Af

Ag

≤ L

hAf

Ag



The hyperbolic space C†(S)

Definition (Diffeomorphism curve graph of S)

For genus ≥ 2 we define C†(S) to be the graph with
Vertices: smooth simple closed curves in S , not null-homotopic
Edges: Between α 6= β iff α ∩ β = ∅.

Allow slightly more edges when genus = 1.
This is a metric space when we set each edge length equal to 1.



Main theorem

The main theorem now follows from

Theorem (Bowden–Hensel–W.)

C†(S) is hyperbolic and the natural action of Diff0(S) on C†(S)
satisfies (BF )

Thus cl and therefore frag are unbounded.

Is this the first example of a simple group with action on a
hyperbolic space satisfying (BF )?



Overview of the proof

Hyperbolicity of C†(S):
We show that distances between (transverse) vertices/curves are
realised as distances in δ-hyperbolic spaces for absolute δ. (these
spaces are types of ordinary curve graphs) This implies
hyperbolicity of C†(S).

Loxodromics:
Examples come from point-pushing pseudo-Anosovs on S − P,
where P ⊂ S is finite. The distance realisation from above helps
prove this.

Independent loxodromics:
Let f ∈ Diff0(S) be loxodromic on C†(S). Fix representative
b ∈ Diff(S) of a pseudo-Anosov mapping class. Then we show
that for n > 0 sufficiently large we have f and g = bnfb−n

independent in Diff0(S).



Tea break



C†(S) hyperbolic

We’re going to compare distances in C†(S) to distances in
Cs(S − P), P ⊂ S finite.

Definition (Surviving curve graph)

Let S be a closed surface genus ≥ 2 and P ⊂ S finite. The
vertices of Cs(S − P) are the isotopy classes of surviving simple
closed curves in S −P i.e. curves that are not null-homotopic in S .
Edges if they admit disjoint representatives.

This is a subgraph of the curve graph C(S − P), which was proved
to be hyperbolic by Masur–Minsky. Curve graphs were proved to
be hyperbolic with an absolute constant δ (Aougab, Bowditch,
Clay–Rafi–Schleimer, Hensel–Przytycki–W., Przytycki–Sisto).

Theorem (A. Rasmussen)

There is δ such that Cs(S − P) is δ-hyperbolic whenever S closed
genus ≥ 2 and P ⊂ S finite.



C†(S) hyperbolic

Four-point condition: if there is δ such that for any set of points
{α1, α2, α3, α4} ⊂ C†(S) we have that d†(αi , αj) is uniformly
approximated by d(vi , vj) where vi are in some δ-hyperbolic space
then C†(S) is hyperbolic.
Overview:

1 Pay a small price (errors of ±2) to make the αi pairwise
transverse.

2 Puncture each component of S − ∪iαi . Puncture set P ⊂ S
finite.

3 Then d†(αi , αj) = dCs(S−P)([αi ]S−P , [αj ]S−P).

4 We’re done by A. Rasmussen’s theorem and the four-point
condition.



Puncturing the complementary regions



Puncturing the complementary regions

puncture set P in orange



C†(S) hyperbolic: d †(αi , αj) = dCs(S−P)([αi ]S−P , [αj ]S−P)

We can project αi to its isotopy class [αi ]S−P . Disjointness is
preserved thus

d†(αi , αj) ≥ dCs(S−P)([αi ]S−P , [αj ]S−P).

On the other hand, if αi and αj are in minimal position on S − P,
then given a geodesic [αi ]S−P , v1, . . . , vd−1, [αj ]S−P in Cs(S − P),
we can find representatives αi , ν1, . . . , νd−1, αj which gives a path
in C†(S). Hence

d†(αi , αj) ≤ dCs(S−P)([αi ]S−P , [αj ]S−P).

(puncturing each complementary region of S − ∪iαi guarantees
minimal position)



Loxodromics on C†(S) in Diff0(S)

A mapping class of S − P is pseudo-Anosov if it has a
representative which is Anosov outside finitely many points.

Theorem (Masur–Minsky)

f ∈ Mcg(S − P) pseudo-Anosov
=⇒ f loxodromic on C(S − P)

=⇒ f loxodromic on Cs(S − P) too.
By the Lipschitz projection C†(S) to Cs(S − P) we get that any
representative of f as a diffeomorphism of S preserving P will be
loxodromic on C†(S)



Independent loxodromics

Observe there is a 1-Lipschitz map π : C†(S)→ C(S), which is
Diff(S)-equivariant.
Furthermore for f ∈ Diff0(S) then f [α] = [α] for every [α] in C(S)
i.e. Diff0(S) does nothing to C(S).

Lemma

If f and g are dependent loxodromic elements of Diff0(S) then we
can find h ∈ Diff0(S) such that hAf fellow travels Ag for a long
time in C†(S).
Therefore π(hAf ) = hπ(Af ) = π(Af ) and π(Ag ) are uniformly
bounded from each other in C(S). (constants depending on δ and
quality of Af and Ag )

However for b ∈ Diff(S) we have Abnfb−n = bAf and
π(bAf ) = bπ(Af ) can be made arbitrarily far from π(Af ).
Therefore if we pick b pseudo-Anosov and n large enough we will
have f and g = bnfb−n independent in Diff0(S).



Cartoon of independent loxodromics
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Thank you!


