Quasimorphisms on diffeomorphism groups

Richard Webb joint with J. Bowden and S. Hensel

Regensburg low-dimensional geometry and topology seminar 19th May 2020

The University of Manchester

- 1 Main theme of the talk
- 2 Norms/metrics on $\text{Diff}_0(M)$ e.g. commutator length norm, fragmentation norm
- 3 Known results for various manifolds M
- 4 Our results
- **5** Quasimorphisms on $\text{Diff}_0(S)$
- 6 Remarks and overview of the proof
- Tea break, followed by more detailed discussions.

- M smooth manifold
- Diff(M) orientation-preserving compactly-supported diffeomorphisms $M \rightarrow M$, a topological group
- $\text{Diff}_0(M)$ the component of Diff containing the identity
- Today: Interested in the algebra of $\text{Diff}_0(S)$, surface S
- Results/techniques of talk also apply to $Homeo_0(S)$.

 ${\cal S}$ an orientable closed surface genus $\geq 1.$ There is an exact sequence

$$\operatorname{Diff}_0(S) \to \operatorname{Diff}(S) \to \operatorname{Mcg}(S)$$

 $\mathsf{Mcg}(S)$ is countable, has uncountably many normal subgroups well understood

 $\text{Diff}_0(S)$ is uncountable, has only two normal subgroups poorly understood

Despite these key differences we introduce Mcg(S)-inspired tools for $Diff_0(S)$.

Background: fragmentation norm

 $f \in \text{Diff}_0(M)$ define

$$\operatorname{supp}(f) \coloneqq \overline{\{x \in M : fx \neq x\}}$$

Say f is disk supported if $supp(f) \subset B$ open disk B.

Lemma (Fragmentation Lemma)

 $\forall f \in \text{Diff}_0(M) \exists f_1, \ldots, f_n \in \text{Diff}_0(M) \text{ such that } f = f_1 \ldots f_n \text{ and } each f_i \text{ disk supported.}$

i.e. the disk-supported maps generate $\text{Diff}_0(M)$

Definition (Fragmentation norm frag)

frag(f) is the word length of f with the disk-supported maps as the generating set i.e.

$$frag(f) := min\{n : f_1, \ldots, f_n \text{ as above}\}$$

and frag(*id*) \coloneqq 0.

Fragmentation norm isn't easy to understand

•
$$frag(f) = 0$$
 iff $f = id$

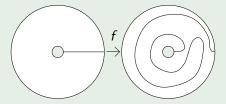
- frag(f) = 1 iff $f \neq id$ and f disk supported
- $frag(f) \ge 2$ iff f not disk supported

What more can we say ...?

In general computing the fragmentation norm is poorly understood.

Example

 $M=S^1 imes (-1,1)$ point push around the core curve $S^1 imes \{0\}.$



How does $frag(f^n)$ with respect to n? It's at most linear, but is it linear? Sublinear? Bounded?

Mather, Thurston: $\text{Diff}_0(M)$ is perfect i.e. every element f is a product of commutators $[a, b] = aba^{-1}b^{-1}$. Equivalently any homomorphism of $\text{Diff}_0(M)$ to an abelian group has trivial image.

Homeo₀(M) is also perfect. Both groups are simple too!

Thus we can also consider

Definition (Commutator length norm cl)

cl(f) is the word length of f with respect to the generating set the set of commutators, and cl(id) := 0

Natural Question

When is cl: $\text{Diff}_0(M) \to \mathbb{R}$ a bounded function *i.e.* when is $\text{Diff}_0(M)$ uniformly perfect?

Work of Burago-Ivanov-Polterovich

frag and cl are examples of *conjugation-invariant norms* on $\text{Diff}_0(M)$

For many M these norms are uniformly bounded.

Theorem (Burago–Ivanov–Polterovich)

Let M be one of the following

- an open n-ball B,
- an open annulus $S^1 imes (-1,1)$,
- more generally a portable manifold e.g. open handlebody,
- an n-sphere Sⁿ, or
- a closed, orientable 3-manifold.

Then for any conjugation-invariant norm ρ : $\text{Diff}_0(M) \to \mathbb{R}$ there exists C such that $\forall f \in \text{Diff}_0(M)$ we have $\rho(f) \leq C$. Thus frag is bounded and $\text{Diff}_0(M)$ is uniformly perfect.

So frag on the annulus is uniformly bounded! Not obvious!

We obtain

Corollary (Burago-Ivanov-Polterovich)

Given a conjugation-invariant norm ρ : $\text{Diff}_0(M) \to \mathbb{R}$ there exists C such that $\forall f$ we have $\rho(f) \leq C \operatorname{frag}(f)$.

The proof is beautifully short. Write $f = f_1 \dots f_n$ where n = frag(f)and f_i are disk supported. Then by the previous theorem $\rho(f_i) \leq C$ for some C (hint: after conjugating f_i they are supported in the same ball, use conjugation invariance), so we're done.

frag despite its purely topological definition is in fact intimately related to the algebra of $\text{Diff}_0(M)$

Natural Question

But is there M with frag unbounded on $\text{Diff}_0(M)$?

Theorem (Tsuboi)

Let M be an orientable closed smooth n-manifold with either

- $n \geq 5$, or
- n = 4 such that M has a handlebody decomposition without 2-handles,

then $\text{Diff}_0(M)$ is uniformly perfect and frag is bounded.

We are left with dimensions 2 and 4:

Question

What about closed surfaces *S* with positive genus? What about 4-dimensional *M* with 2-handles?

Main theorem

Let G be a perfect group. The stable commutator length of $g \in G$ is $scl(g) := \lim_{n \to \infty} \frac{1}{n} cl(g^n)$.

Theorem (Bowden–Hensel–W.)

Let S be a closed, orientable surface of genus ≥ 1 . Then there exists $g \in \text{Diff}_0(S)$ with scl(g) > 0. In particular $\text{Diff}_0(S)$ is not uniformly perfect and frag is unbounded.

- **1** These are the first examples of closed smooth manifolds M where $\text{Diff}_0(M)$ has unbounded fragmentation norm.
- **2** Our methods/results apply to Homeo₀(S) too.

Strategy: Construct *quasimorphisms* to show scl(g) > 0 and cl unbounded and deduce frag unbounded.

These quasimorphisms come from geometric group theory.

Definition

Let G be a group. A map $\phi \colon G \to \mathbb{R}$ is a *quasimorphism* if $\exists D \ge 0$ such that $\forall g, h \in G$ we have

$$|\phi(gh) - \phi(g) - \phi(h)| \leq D.$$

This is a tool to show scl > 0 somewhere and hence cl unbounded. Observe:

- $|\phi(id)| \leq D,$
- 2 $|\phi[f,g]| \leq 7D$, so commutators are bounded,
- **3** if ϕ is unbounded then $\exists g \in G$ with $\phi(g^n)$ linear in n,

4 such g has scl(g) > 0 hence G not uniformly perfect.

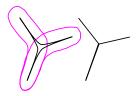
There is a converse called *Bavard duality*.

Source of quasimorphisms via hyperbolic geometry

To prove our theorem we need an unbounded quasimorphism. This will come from an action of $\text{Diff}_0(S)$ by isometries on a hyperbolic space $C^{\dagger}(S)$, defined later.

Definition (Hyperbolicity)

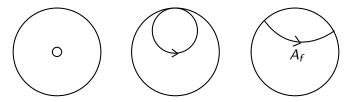
A geodesic metric space X is hyperbolic if $\exists \delta \geq 0$ such that any triangle formed of geodesics g_1, g_2, g_3 satisfies $g_1 \subset N_{\delta}(g_2 \cup g_3)$.



Plays an important role in some breakthroughs of the past decade Cremona group is not simple (Cantat–Lamy) Virtual fibring/Haken conjecture in 3-manifolds (Agol, Wise) Define $|f| := \lim_{n\to\infty} \frac{1}{n}d(x, f^nx)$ asymptotic translation length. Any isometry of a hyperbolic space is either

- *elliptic*, |f| = 0 and has bounded diameter orbit, or
- parabolic, |f| = 0 has unbounded diameter orbit, or
- loxodromic, |f| > 0.

 $\operatorname{Diff}_0(S)$ acts by isometries on $\mathcal{C}^{\dagger}(S)$.



Today: Loxodromic elements are the important ones.

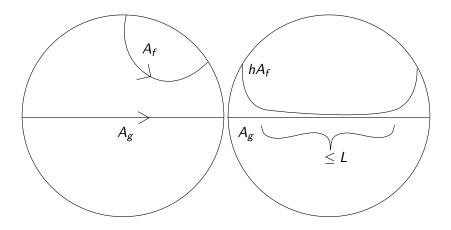
Here is a widely applicable and useful condition to produce many unbounded quasimorphisms, which generalises that of Epstein–Fujiwara and Brooks.

Theorem (Bestvina–Fujiwara, (BF) condition)

Suppose G act by isometries on hyperbolic X with loxodromic elements $f, g \in G$ that are independent. Then there exists many unbounded quasimorphisms on G.

Technical: Here we say that loxodromic f and g are *independent* if there is a uniform bound L such that for any $h \in G$, hA_f cannot fellow travel A_g for further than L, where A_f and A_g are the "axes" of f and g.

Non-example: natural action of $PSL_2\mathbb{R}$ on \mathbb{H}^2 . Example: natural action of $PSL_2\mathbb{Z}$ on \mathbb{H}^2 .

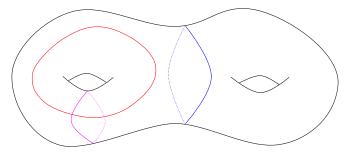


Definition (Diffeomorphism curve graph of S)

For genus ≥ 2 we define $C^{\dagger}(S)$ to be the graph with Vertices: smooth simple closed curves in S, not null-homotopic Edges: Between $\alpha \neq \beta$ iff $\alpha \cap \beta = \emptyset$.

Allow slightly more edges when genus = 1.

This is a metric space when we set each edge length equal to 1.



The main theorem now follows from

Theorem (Bowden-Hensel-W.)

 $\mathcal{C}^{\dagger}(S)$ is hyperbolic and the natural action of $\mathsf{Diff}_0(S)$ on $\mathcal{C}^{\dagger}(S)$ satisfies (BF)

Thus cl and therefore frag are unbounded.

Is this the first example of a simple group with action on a hyperbolic space satisfying (BF)?

Overview of the proof

Hyperbolicity of $C^{\dagger}(S)$:

We show that distances between (transverse) vertices/curves are realised as distances in δ -hyperbolic spaces for absolute δ . (these spaces are types of ordinary curve graphs) This implies hyperbolicity of $C^{\dagger}(S)$.

Loxodromics:

Examples come from point-pushing pseudo-Anosovs on S - P, where $P \subset S$ is finite. The distance realisation from above helps prove this.

Independent loxodromics:

Let $f \in \text{Diff}_0(S)$ be loxodromic on $C^{\dagger}(S)$. Fix representative $b \in \text{Diff}(S)$ of a pseudo-Anosov mapping class. Then we show that for n > 0 sufficiently large we have f and $g = b^n f b^{-n}$ independent in $\text{Diff}_0(S)$.

Tea break

$\mathcal{C}^{\dagger}(S)$ hyperbolic

We're going to compare distances in $C^{\dagger}(S)$ to distances in $C^{s}(S - P)$, $P \subset S$ finite.

Definition (Surviving curve graph)

Let S be a closed surface genus ≥ 2 and $P \subset S$ finite. The vertices of $\mathcal{C}^{s}(S - P)$ are the isotopy classes of *surviving* simple closed curves in S - P i.e. curves that are not null-homotopic in S. Edges if they admit disjoint representatives.

This is a subgraph of the curve graph C(S - P), which was proved to be hyperbolic by Masur–Minsky. Curve graphs were proved to be hyperbolic with an absolute constant δ (Aougab, Bowditch, Clay–Rafi–Schleimer, Hensel–Przytycki–W., Przytycki–Sisto).

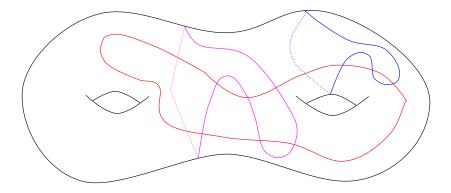
Theorem (A. Rasmussen)

There is δ such that $C^{s}(S - P)$ is δ -hyperbolic whenever S closed genus ≥ 2 and $P \subset S$ finite.

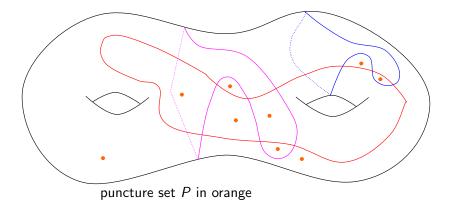
Four-point condition: if there is δ such that for any set of points $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} \subset C^{\dagger}(S)$ we have that $d^{\dagger}(\alpha_i, \alpha_j)$ is uniformly approximated by $d(v_i, v_j)$ where v_i are in some δ -hyperbolic space then $C^{\dagger}(S)$ is hyperbolic. Overview:

- 1 Pay a small price (errors of ± 2) to make the α_i pairwise transverse.
- 2 Puncture each component of $S \bigcup_i \alpha_i$. Puncture set $P \subset S$ finite.
- 3 Then $d^{\dagger}(\alpha_i, \alpha_j) = d_{\mathcal{C}^s(S-P)}([\alpha_i]_{S-P}, [\alpha_j]_{S-P}).$
- 4 We're done by A. Rasmussen's theorem and the four-point condition.

Puncturing the complementary regions



Puncturing the complementary regions



We can project α_i to its isotopy class $[\alpha_i]_{S-P}$. Disjointness is preserved thus

$$d^{\dagger}(\alpha_i, \alpha_j) \geq d_{\mathcal{C}^{s}(S-P)}([\alpha_i]_{S-P}, [\alpha_j]_{S-P}).$$

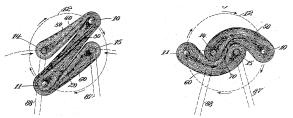
On the other hand, if α_i and α_j are in minimal position on S - P, then given a geodesic $[\alpha_i]_{S-P}$, $v_1, \ldots, v_{d-1}, [\alpha_j]_{S-P}$ in $\mathcal{C}^s(S - P)$, we can find representatives $\alpha_i, \nu_1, \ldots, \nu_{d-1}, \alpha_j$ which gives a path in $\mathcal{C}^{\dagger}(S)$. Hence

$$d^{\dagger}(\alpha_i, \alpha_j) \leq d_{\mathcal{C}^{s}(S-P)}([\alpha_i]_{S-P}, [\alpha_j]_{S-P}).$$

(puncturing each complementary region of $S - \bigcup_i \alpha_i$ guarantees minimal position)

Loxodromics on $C^{\dagger}(S)$ in $\text{Diff}_0(S)$

A mapping class of S - P is *pseudo-Anosov* if it has a representative which is Anosov outside finitely many points.



Theorem (Masur–Minsky)

 $f \in Mcg(S - P)$ pseudo-Anosov $\implies f$ loxodromic on C(S - P)

 \implies f loxodromic on $\mathcal{C}^{s}(S - P)$ too. By the Lipschitz projection $\mathcal{C}^{\dagger}(S)$ to $\mathcal{C}^{s}(S - P)$ we get that any representative of f as a diffeomorphism of S preserving P will be loxodromic on $\mathcal{C}^{\dagger}(S)$

Independent loxodromics

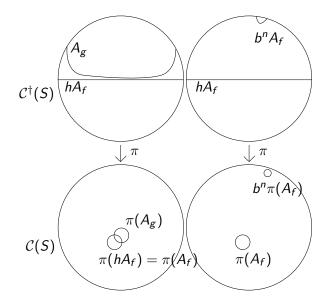
Observe there is a 1-Lipschitz map $\pi : C^{\dagger}(S) \to C(S)$, which is Diff(S)-equivariant. Furthermore for $f \in \text{Diff}_0(S)$ then $f[\alpha] = [\alpha]$ for every $[\alpha]$ in C(S) i.e. Diff₀(S) does nothing to C(S).

Lemma

If f and g are dependent loxodromic elements of $\text{Diff}_0(S)$ then we can find $h \in \text{Diff}_0(S)$ such that hA_f fellow travels A_g for a long time in $C^{\dagger}(S)$. Therefore $\pi(hA_f) = h\pi(A_f) = \pi(A_f)$ and $\pi(A_g)$ are uniformly bounded from each other in C(S). (constants depending on δ and quality of A_f and A_g)

However for $b \in \text{Diff}(S)$ we have $A_{b^n f b^{-n}} = bA_f$ and $\pi(bA_f) = b\pi(A_f)$ can be made arbitrarily far from $\pi(A_f)$. Therefore if we pick *b* pseudo-Anosov and *n* large enough we will have *f* and $g = b^n f b^{-n}$ independent in $\text{Diff}_0(S)$.

Cartoon of independent loxodromics



Thank you!