Filtered instanton Floer homology and the 3-dimensional homology cobordism group (Joint work with Yuta Nozaki and Kouki Sato)

Masaki Taniguchi

RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program

Regensburg low-dimensional geometry and topology seminar, Nov. 10 2020 This slide is available at

"https://sites.google.com/view/masaki-taniguchis-homepage".

Contents

1 Backgrounds

2 Invariants $\{r_s\}$ and its applications

3 Construction of invariants $\{r_s\}$

Two cobordism groups

Let Y_0 and Y_1 be oriented homology 3-spheres. ¹

Definition (The homology cobordism group)

We say Y_0 is homology cobordant to Y_1 $(Y_0 \sim_{\mathbb{Z}H} Y_1)$ if there exists a compact oriented smooth 4-manifold W with $\partial W = Y_0 \coprod (-Y_1)$ such that the maps $H_*(Y_i,\mathbb{Z}) \to H_*(W,\mathbb{Z})$ induced by inclusions $Y_i \to W$ are isomorphisms.

$$\Theta^3_{\mathbb{Z}} := \{ \text{ oriented homology 3-spheres } \} / \sim_{\mathbb{Z}H}$$

Let K_0 and K_1 be oriented knots in S^3 .

Definition (The knot concordance group C)

We say K_0 is concordant to K_1 ($K_0 \sim_c K_1$) if there exists a smooth embedding $J: S^1 \times [0,1] \to S^3 \times [0,1]$ such that $J|_{S^1 \times \{i\}} = K_i \times \{i\}$ for i=0 and 1.

$$\mathcal{C} := \{ \text{ all oriented knots } \} / \sim_c$$

¹A closed 3-manifold Y is called a homology 3-sphere if $H_*(Y;\mathbb{Z})\cong H_*(S^3;\mathbb{Z}).$

Known results related to $\Theta^3_{\mathbb{Z}}$ and $\mathcal C$

■ The rational homology cobordism group $\Theta^3_{\mathbb{Q}}$ is defined by replacing \mathbb{Z} with \mathbb{Q} in the definition of $\Theta^3_{\mathbb{Z}}$. The double branched cover gives a homomorphism

$$\Sigma: \mathcal{C} \to \Theta^3_{\mathbb{Q}}.$$

- 1969, Kervaire, the n-dimensional PL homology cobordism group $\Theta^n_{\mathbb{Z}}(PL)$ is trivial for $n \neq 3$. Moreover, $\Theta^3_{\mathbb{Z}}(PL) \cong \Theta^3_{\mathbb{Z}}$. \exists similar classification result for higher dimensional knot concordance group (1969, Levine)
- 1976, Galewski–Stern, Matumoto, any topological manifold M with $\dim \geq 5$ admits a triangulation $\iff 0 = \exists \delta(\Delta(M)) \in H^5(M, \operatorname{Ker} \mu)$, where $\mu:\Theta^{\mathbb{Z}}_{\mathbb{Z}} \to \mathbb{Z}_2$ is the Roklin homomorphism.
- 1982, Donaldson, Theorem A implies that $\Sigma(2,3,5)$ is not a torsion in $\Theta_{\mathbb{Z}}^3$. (YM gauge theory)
- 1990, Fintushel–Stern, Furuta, $\{\Sigma(p,q,pqn-1)\}_{n=1}^{\infty}$ are linearly independent in $\Theta_{\mathbb{Z}}^3$. (YM gauge theory)

2002, Frøyshov, a surjective homomorphism

$$h:\Theta^3_{\mathbb{Z}}\to\mathbb{Z}$$

such that $h(\Sigma(2,3,5))=1\Longrightarrow$ existence of a \mathbb{Z} -summand. (Floer homology in YM gauge theory)

- 2016, Manolescu, Roklin homomorphism $\mu: \Theta^3_{\mathbb{Z}} \to \mathbb{Z}_2$ does not split \Longrightarrow disproof of triangulation conjecture for $n \geq 5$. (Pin(2)-Seibeg-Witten Floer homology)
- 2018, Dai-Hom-Stoffregen-Truong, a surjective homomorphism

$$\Theta^3_{\mathbb{Z}} \to \mathbb{Z}^{\infty}$$
.

 \Longrightarrow existence of a $\mathbb{Z}^{\infty}\text{-summand}.$ (Involutive Heegaard Floer homology)

lacksquare 2018, Daemi, a family of real-valued functions parametrized by $k\in\mathbb{Z}$

$$\Gamma_Y(k):\Theta^3_{\mathbb{Z}}\to[0,\infty]$$

(Floer homology in YM gauge theory)

 \blacksquare 2020, Nov, Hendricks-Hom-Stoffregen-Zemke, the manifold $S^3_1(-2T(6,7)\#T(6,13)\#T(-2,3;2,5))$ is not contained in the subgroup Θ^3_{SF} generated by Seifert homology 3-spheres. (Involutive Heegaard Floer homology) (T(-2,3;2,5):(2,5)-cable of $T(-2,3),\,2$ is the longitudinal winding.)

Open questions on $\Theta^3_{\mathbb{Z}}$ and $\mathcal C$

The first point is that $-S_{1/n}(T_{p,q}) = \Sigma(p,q,pqn-1)$.

Open question on $\Theta^3_{\mathbb{Z}}$

Is there a nice sufficient condition of K such that $\{S_{1/n}(K)\}$ are linearly independent in $\Theta_{\mathbb{Z}}^3$?

The second point is a geometric structure of homology 3-spheres. We confirmed that Hendricks-Hom-Stoffregen-Zemke's example $S_1^3(-2T(6,7)\#T(6,13)\#T(-2,3;2,5))$ is a graph homology 3-sphere.

Open question on $\Theta^3_{\mathbb{Z}}$

Is $\Theta^3_{\mathbb{Z}}$ generated by all graph homology 3-spheres?

The Whitehead double² determines a map $D \colon \mathcal{C} \to \mathcal{C}$.

Hedden-Kirk's conjecture

The map D preserves the linear independence.

Idea to answer open questions

We will give a filtration of subgroups of $\Theta^3_{\mathbb{Z}}$ by giving a real-valued homology cobordism invariant.

Main result

Theorem (2019, Nozaki-Sato-T, (Floer homology in YM gauge theory))

For $s \in \mathbb{R}_{\leq 0} \coprod \{-\infty\}$ and an oriented homology sphere Y, we define $r_s(Y) \in \mathbb{R}_{>0} \coprod \{\infty\}$ satisfying the following conditions:

- $\ \ \, \textbf{If} \,\, s \leq s' \text{, then} \,\, r_{s'}(Y) \leq r_s(Y).$
- ${f 2}$ (Values) The values of $r_s(Y)$ are contained in the set of critical values of the SU(2)-Chern–Simons functional of Y.
- (Negative Definite Inequality) Let Y_0 and Y_1 be $\mathbb{Z}HS^3$'s and W a negative definite cobordism with $\partial W = Y_0 \amalg -Y_1$. Then $r_s(Y_1) \leq r_s(Y_0)$ holds for any s. If $\pi_1(W) = 1$ and $r_s(Y_0) < \infty$, then $r_s(Y_1) < r_s(Y_0)$ holds.
- lacktriangle (Connectes Sum Inequality) The invariant r_s satisfies

$$r_s(Y_1 \# Y_2) \ge \min\{r_{s_1}(Y_1) + s_2, r_{s_2}(Y_2) + s_1\}$$

for
$$s = s_1 + s_2 \in (-\infty, 0]$$
.

⑤ (Non-Triviality) $r_{-\infty}(Y) < \infty \iff h(Y) < 0$, where $h: \Theta^3_{\mathbb{Z}} \to \mathbb{Z}$ is the Frøyshov homomorphism.

Remarks on the main theorem

- Daemi's invariants $\Gamma_Y(k)$ also satisfy the conditions 2, 3 and 5 for a positive k. \exists a relation between $r_s(Y)$ and $\Gamma_Y(k)$? We proved that, for any oriented homology 3-sphere Y, $r_{-\infty}(-Y) = \Gamma_Y(1)$ (NST19).
- \blacksquare \exists an example of Y such that $r_s(Y)$ is not constant w.r.t. s.
- Roughly speaking, $r_0(Y)$ is given by

$$\begin{split} &\inf\left\{-\frac{1}{8\pi^2}\int_{Y\times\mathbb{R}} \operatorname{Tr}(F(A)\wedge F(A)) \;\middle|\; A\in\Omega^1_{Y\times\mathbb{R}}\otimes \mathfrak{su}(2) \text{ with } (*)\right\} \\ &=\inf\left\{cs(b)\;\middle|\; A\in\Omega^1_{Y\times\mathbb{R}}\otimes \mathfrak{su}(2) \text{ with } (*), b=\exists \lim_{t\to -\infty} A|_{Y\times\{t\}}\right\} \end{split}$$

The conditions (*) are given as follows:

- $\bullet 0 = \exists \lim_{t \to \infty} A|_{Y \times \{t\}}.$
- \exists Riemann metric g on Y such that the ASD-equation $\frac{1}{2}(1 + *_{g+dt^2})F(A) = 0$ is satisfied.
- The Fredholm index of the operator $d_A^+ + d_A^*$ on $Y \times \mathbb{R}$ is 1.

Calculations

Example

 $r_s(S^3) = \infty$ for any s.

Theorem (D18,NST19)

$$\Gamma_{\Sigma(p,q,pqn-1)}(1)=r_s(-\Sigma(p,q,pqn-1))=\frac{1}{4pq(pqn-1)}$$
 for any $s.$

In general,

$$\bigcup_{s} r_s(\Theta_{GR}^3) \subset \mathbb{Q}_{>0} \coprod \{\infty\},$$

where Θ_{GR}^3 is the subgroup of $\Theta_{\mathbb{Z}}^3$ generated by graph homology 3-spheres. We tried to calculate r_s for the hyperbolic manifold $S_{1/2}^3(5_2^*)$ obtained by the 1/2-surgery along the mirror image of 5_2 .

Calculations

Theorem (NST, 19)

By computer, for any s,

$$r_s(S_{1/2}^3(5_2^*)) \approx 0.0017648904\ 7864885113\ 0739625897$$

 $0947779330\ 4925308209$

whose error is 10^{-50} , where $S_{1/2}^3(\mathbf{5}_2^*)$ is the 1/2 surgery on the mirror image of $\mathbf{5}_2$ in Rolfsen's table.

Our computation is based on Kirk and Klassen's formula (to be explained in the next slide).

Our conjecture

$$r_s(S^3_{1/2}(5_2^*))$$
 is irrational.

If the conjecture is true, we can conclude that $\Theta_{\mathbb{Z}}^3/\Theta_{GR}^3$ is non-trivial.

Computation of $r_s(S^3_{1/2}(5^*_2))$

Let ρ_0 , ρ_1 be SU(2)-representations of $\pi_1=\pi_1(S^3_{-1/2}(5_2))$ and $\{\rho_s\}_s\subset \operatorname{Hom}(\pi_1(S^3\setminus 5_2), SL(2,\mathbb{C}))$ a path from ρ_0 to ρ_1 . Then Kirk and Klassen gave a fomula of the form

$$cs(\rho_1) - cs(\rho_0) \equiv \int_0^1 {}^{"} \rho_s(\lambda) \& \rho_s(\mu) {}^{"} ds \mod \mathbb{Z}.$$

The irreducible representations of $\pi_1(S^3 \setminus 5_2)$ are described by the Riley polynomial

$$\phi(t,u) = -(t^{-2} + t^2)u + (t^{-1} + t)(2 + 3u + 2u^2) - (3 + 6u + 3u^2 + u^3).$$

	t	u	-cs
ρ_1	0.716932 + 0.697143i	-0.0755806	0.00176489
ρ_2	0.309017 + 0.951057i	-1.00000	0.166667
ρ_3	-0.339570 + 0.940581i	-2.41421	0.604167
ρ_4	-0.778407 + 0.627759i	-1.69110	0.388460
ρ_5	-0.809017 + 0.587785i	-1.00000	0.166667
ρ_6	-0.905371 + 0.424621i	-2.16991	0.865934
ρ_7	-0.912712 + 0.408603i	-3.62043	0.321158
ρ_8	-0.988857 + 0.148870i	-2.41421	0.604167

We define

$$\Theta_{\mathbb{Z}}^{3}(\geq r) := \{ [Y] \in \Theta_{\mathbb{Z}}^{3} | \min\{r_{0}(Y), r_{0}(-Y)\} \geq r \}$$

for $r\in[0,\infty]$. We see that $\Theta^3_{\mathbb{Z}}(\geq r)$ is a subgroup because of the connected sum inequality

$$r_0(Y_1 \# Y_2) \ge \min\{r_0(Y), r_0(-Y)\}.$$

Three applications of $\{r_s\}$

Theorem ((I), NST, 19)

For any knot K in S^3 with $h(S_1(K)) < 0$, $\{S_{1/n}^3(K)\}$ are linearly independent in $\Theta_{\mathbb{Z}}^3$.

If we take $K=T_{p,q}$, this theorem recovers the result of Furuta, Fintushel–Stern in '90.

Proposition

All positive k-twisted knots ($k \ge 1$) and (2,q)-cable knots ($q \ge 3$) satisfy $h(S_1(K)) < 0$.

Useful lemmas

In the proof of Theorem (I), we use the following property of r_0 .

Lemma

Let $\{Y_n\}_{n=1}^\infty$ be a sequence of oriented homology 3-spheres satisfying the following two conditions:

- $r_0(Y_1) > r_0(Y_2) > \cdots$ and
- $ightharpoonup r_0(-Y_n)=\infty$ for any n.

Then the sequence $\{[Y_n]\}$ are linearly independent in both $\Theta^3_{\mathbb{Z}}$ and $\Theta^3_{\mathbb{Q}}$.

Sketch of the proof of the Theorem (I)

Set $Y_n:=S_{1/n}(K)$. The Non-Triviality and Negative Deinite Inequality of r_0 implies $r_0(Y_1)<\infty$ and $r_0(-Y_n)=\infty$. On the other hand, we have a positive definite cobordism W_n with $\partial(W_n)=-Y_n\amalg(Y_{n+1})$ described by

One can see that W_n is simply connected for each n. Therefore the strict version of Negative Deinite Inequality of r_0 implies that

$$r_0(Y_1) > r_0(Y_2) > \cdots$$
.

Three applications of $\{r_s\}$

Theorem ((II), NST, 19)

 \exists infinitely many homology spheres $\{Y_k\}$ such that Y_k does not admit any definite bounding.

Set
$$Y_k:=2\Sigma(2,3,5)\#(-\Sigma(2,3,6k+5)).$$
 $(k\geq 1)$ Then using Connected Sum Inequality, we have $r_0(Y_k)=\frac{1}{24(6k+5)}<\infty.$ Moreover, the calculation $h(-Y_k)=-1$ and Non-Triviality implies that $r_0(-Y_k)<\infty.$

Corollary (NST, 19)

The class $[Y_k] \in \Theta^3_{\mathbb{Z}}$ does not contain any Seifert homology sphere and homology 3-sphere obtained by a surgery on a knot in S^3 .

Three applications of $\{r_s\}$

Let $T_{p,q}$ be the (p,q)-torus knot. In 2012, Hedden–Kirk proved that $\{D(T_{2,2^n-1})\}_{n=2}^\infty$ are lineary independent in $\mathcal C$.

Theorem ((III), NST, 19)

Let (p,q) be a coprime pair. $\{D(T_{p,np+q})\}_{n=1}^{\infty}$ are lineary independent in \mathcal{C} .

Since

$$\Sigma \colon \mathcal{C} \to \Theta^3_{\mathbb{Q}}$$

is a homomorphism, it is sufficient to prove that $\{\Sigma(D(T_{p,kp+q}))\}_{k=1}^{\infty}$ are linearly independent in $\Theta^3_{\mathbb Q}$. Note that $\Sigma(D(T_{p,q})) = S^3_{1/2}(T_{p,q} \# T_{p,q})$ is $\mathbb Z HS^3$.

Lemma

- $r_0(\Sigma(D(T_{p,q})) < \infty.$
- $r_0(\Sigma(D(T_{p,q})) > r_0(\Sigma(D(T_{p,p+q})).$

To prove the above lemma, we construct

- neg. defn. cob. with boundary $(-\Sigma(p,q,2pq-1)) \coprod (-\Sigma(D(T_{p,q}))$
- simp. conn. neg. defn. cob. with boundary $\Sigma(D(T_{p,q})) \coprod (-\Sigma(D(T_{p,p+q}))$

Sketch of the proof of Theorem (III)

Lemma

If $K_0 \to \cdots \to K_1$ by a seq. of pos. crossing changes, then \exists neg. defn. cob. with boundary $S^3_{1/n}(K_1) \amalg (-S^3_{1/n}(K_0))$ for $\forall n$.

- $T_{p,q} \# T_{p,q} \stackrel{\mathsf{pos. c.c.}}{\longrightarrow} T_{p,q} \leadsto r_0(\Sigma(D_{p,q})) < \infty$
- $\blacksquare \ T_{p,q+p} \# T_{p,q+p} \stackrel{\mathsf{pos. c.c.}}{\longrightarrow} T_{p,q} \# T_{p,q} \leadsto r_0(\Sigma(D_{p,q})) > r_0(\Sigma(D_{p,p+q}))$

History of instanton homology related to our work

Let Y be an oriented homology 3-sphere.

- 1987, Floer, Instanton homology $I_*(Y)$ with $* \in \mathbb{Z}/8\mathbb{Z}$.
- 1992, Fintushel–Stern, Filtered version of instanton homology $I_*^{[r,r+1]}(Y)$ with $* \in \mathbb{Z}$ for $r \in \mathbb{R}$.
- 2002, Donaldson, The obstruction class $[\theta_Y] \in I^1(Y)$. If Y admits a negative definite bounding with non-standard intersection form, then $0 \neq [\theta_Y] \in I^1(Y; \mathbb{Q})$.
- 2019, NST, Filtered instanton cohomology $I_{[s,r]}^*(Y)$ and the filtered version $[\theta_Y^{[s,r]}] \in I_{[s,r]}^*(Y)$ of the obstruction class.

Definition

$$r_s(Y) := \sup\{r \in \mathbb{R} \mid 0 = [\theta_Y^{[s,r]}] \in I_{[s,r]}^*(Y)\}$$

Such a quantitative construction in Floer theory appears in several situations including Hamiltonian Floer homology and embedded contact homology.

Construction of $\overline{I_{[s,r]}^*}$ and $[\overline{ heta_Y^{[s,r]}}]$

Let Y be an oriented homology 3-sphere. Set $\mathcal{B}_Y:=\Omega^1_Y\otimes \mathfrak{su}(2)/\mathsf{Map}^0(Y,SU(2))$, where $\mathsf{Map}^0(Y,SU(2))$ is the set of null-homotopic smooth maps and the action is given by $a*g:=g^{-1}dg+g^{-1}ag$. The (perturbed) Chern–Simons functional

$$cs_h: \mathcal{B}_Y \to \mathbb{R}$$

is given by

$$cs([a]) := \frac{1}{8\pi^2} \int_Y \mathsf{Tr}(a \wedge da + \frac{2}{3}a \wedge a \wedge a) + \frac{h}{h}$$

for some perturbation $h\colon \mathcal{B}_Y \to \mathbb{R}$. The "critical point set" of cs_h is given by

$$R_{\mathbf{h}}(Y) = \{ [a] \in \mathcal{B}_Y \mid F(a) + * \operatorname{grad}_a \mathbf{h} = 0 \}.$$

Floer defined the Floer index

$$\operatorname{ind}_{h}: R_{h}(Y) \to \mathbb{Z}$$

under some good situation.

Gradient flow of cs

Fix a Riemann metric on Y. We equip an L^2 -inner product on $\Omega^1_Y \otimes \mathfrak{su}(2)$ by

$$(a,b):=-\frac{1}{4\pi^2}\int_Y {\rm Tr}(a\wedge *b).$$

Then the formal gradient flow of cs w.r.t. the inner product is given by

$$\operatorname{\mathsf{grad}}\ (cs + h) \colon a \mapsto - *_g (F(a)) + \operatorname{\mathsf{grad}}\ h.$$

A downward gradient flow $c:\mathbb{R}\to\Omega^1_Y\otimes\mathfrak{su}(2)$ of grad (cs+h) corresponds to a solution to the ASD-equation

$$\frac{1}{2}(1 + *_{g+dt^2})(F(A) + \pi_h(A)) = 0,$$

where A is the SU(2)-connection on $Y \times \mathbb{R}$ given by $A|_{Y \times t} = c(t)$ such that (dt-component of A) = 0.

In the case of $Y = -\Sigma(2,3,5)$

The critical point set is

$$R(Y) = \{\rho_1^i, \rho_2^i, \theta^i\}_{i \in \mathbb{Z}}.$$

The critical values are

$$cs(\rho_1^i) = \frac{1}{120} + i, \ cs(\rho_2^i) = \frac{49}{120} + i \ \text{and} \ cs(\theta^i) = i.$$

The Floer indicies are given by

$$\operatorname{ind}(\rho_1^i) = 1 + 8i, \ \operatorname{ind}(\rho_2^i) = 5 + 8i \ \operatorname{and} \ \operatorname{ind}(\theta^i) = -3 + 8i.$$

Construction of I_*

Suppose that cs + h is Morse. (\iff Hess $(cs+h)_a$: $Kerd_a^* \to Kerd_a^*$ is injective for any critical point a.) The instanton Floer chain is given by

$$CI_*(Y) := \mathbb{Z}\{[a] \in R_{\mathbf{h}}(Y) \setminus \{\theta^i\} \mid \mathsf{ind}_{\mathbf{h}}([a]) = *\}.$$

The differential is defined by

$$\partial([a]) = \sum_{[b] \in R(Y), \ \operatorname{ind}([a]) - \operatorname{ind}([b]) = 1} \#(M_{\operatorname{h}}([a], [b]) / \mathbb{R})[b],$$

where the space $M_h([a],[b])$ is the set of trajectories of cs+h from [a] to [b].

Construction of I_*

When we give a topology on $M_h([a],[b])$, we use the identification

$$M_{\mathbf{h}}([a],[b]) \cong \{A \in \Omega^1(Y \times \mathbb{R}) \otimes \mathfrak{su}(2)_{L^2_{k,loc}} \mid (*)\}/\mathcal{G},$$

where the conditions (*) are given by

- $\blacksquare A-p^*a\in L^2_k(Y\times (-\infty,-1]),\ A-p^*b\in L^2_k(Y\times [1,\infty))$ and
- $(1 + *_{g+dt^2})(F(A) + \pi_h(A)) = 0$ (ASD equation),

where the map p is the projection $Y \times \mathbb{R} \to Y$. The gauge group $\mathcal G$ is

$$\left\{g\in \mathrm{Map}\; (Y\times \mathbb{R}, SU(2))_{L^2_{k,loc}}\; \left|\; \begin{array}{l} g^*p^*a\in L^2_k(Y\times (-\infty,-1]),\\ g^*p^*b\in L^2_k(Y\times [1,\infty)) \end{array}\right.\right\}.$$

(One can check that the group $\mathcal G$ acts on the space $\{A\in\Omega^1(Y\times\mathbb R)\otimes\mathfrak{su}(2)_{L^2_{h,\log}}\mid (*)\}.$)

Construction of I_*

Theorem (Floer)

There exists a nice class of perturbations $h: \mathcal{B} \to \mathbb{R}$ of cs satisfying the following conditions:

- The map ∂ is well-defined, i.e. , $M_h([a],[b])$ has a structure of a manifold of dimension $\operatorname{ind}([a]) \operatorname{ind}([b])$ such that $\mathbb R$ action on $M_h([a],[b])$ is proper and free if $\operatorname{ind}([a]) \operatorname{ind}([b]) > 0$ and $M_h([a],[b])/\mathbb R$ is compact if $\operatorname{ind}([a]) \operatorname{ind}([b]) = 1$. Moreover, there is a method to give orientations on $M_h([a],[b])$.
- $\partial^2 = 0$ holds.
- The chain homotopy type of (CI_*, ∂) does not depend on h and g_Y .

The instanton (co) homology is given by $I_*(Y) := H_*(CI_*, \partial)$.

Example

$$I_*(-\Sigma(2,3,5)) \cong \begin{cases} \mathbb{Z} & \text{if } * = 1,5 \mod 8 \\ 0 & \text{otherwise} \end{cases}$$

The obstruction class $[\theta]$

Definition

The homomorphism $\theta: CI_1 \to \mathbb{Z}$ is given by $[a] \mapsto \#M_h([a], [\theta^0])$.

One can see that $\partial^*\theta=0$. Therefore, the map θ determines a class $[\theta]\in I^1(Y)$. Although, the definition of the map θ depends on the choice of h and g_Y , the cohomology class does not depend on the choices of h and g_Y .

Example

If $Y = -\Sigma(2,3,5)$, $\theta: CI_1 \to \mathbb{Z}$ satisfies $\theta(\rho_1^0) = \pm 1$. In this case, $[\theta]$ generates $I^1(Y)$.

Construction of $I_{[s,r]}^*$

Definition

For $s \in \mathbb{R}_{\leq 0} \setminus cs(R(Y)) \coprod \{-\infty\}$ and $r \in \mathbb{R}_{\geq 0} \setminus cs(R(Y))$, we define

$$CI_*^{[s,r]}(Y) := \mathbb{Z}\left\{[a] \in R_h(Y) \setminus \{\theta^i\} \middle| \begin{array}{l} \operatorname{ind}([a]) = *, \\ s < (cs+h)([a]) < r \end{array} \right.\right\}$$

The differential $\partial^{[s,r]}$ is given by the restriction of ∂ . The filtered instanton cohomology is given by

$$I_{[s,r]}^*(Y) := H_*(\mathrm{Hom}\ (CI_*^{[s,r]}(Y),\mathbb{Z}),(\partial^{[s,r]})^*).$$

Theorem (Fintushel-Stern, '92)

If we take a small perturbation h to define $I^*_{[s,r]}(Y)$, the chain homotopy type of (Hom $(CI^{[s,r]}_*(Y),\mathbb{Z}),(\partial^{[s,r]})^*$) does not depend on the choice of h and g_Y .

The obstruction class $[\theta^{[s,r]}]$

Definition

For $s \in \mathbb{R}_{\leq 0} \setminus cs(R(Y)) \coprod \{-\infty\}$ and $r \in \mathbb{R}_{\geq 0} \setminus cs(R(Y))$, we have the homomorphism $\theta^{[s,r]}: CI_1^{[s,r]} \to \mathbb{Z}$ given by $[a] \mapsto \#M_{\mathbf{h}}([a],[\theta^0])$.

One can see that $(\partial^{[s,r]})^*\theta=0$. Therefore, the map $\theta^{[s,r]}$ determines a class $[\theta^{[s,r]}]\in I^1_{[s,r]}(Y)$. Moreover, for a small perturbation h, the class $[\theta^{[s,r]}]\in I^1_{[s,r]}(Y)$ is well-defined.

Example

Suppose that $Y = -\Sigma(2, 3, 5)$.

- If $0 < r < \frac{1}{120}$, then the map $\theta^{[s,r]}:CI_1^{[s,r]} \to \mathbb{Z}$ is the zero map since $CI_1^{[s,r]}=0$.
- If $\frac{1}{120} < r$, then the map $\theta^{[s,r]} : CI_1^{[s,r]} \to \mathbb{Z}$ gives an isomorphism.

Definition of r_s

Definition

For a given oriented homology 3-sphere Y and $s \in [-\infty, 0] \setminus cs(R(Y))$,

$$r_s(Y) := \sup\{r \mid 0 = [\theta^{[s,r]} \otimes \mathsf{Id}_{\mathbb{Q}}] \in I^1_{[s,r]}(Y;\mathbb{Q})\}.$$

When $s \in cs(R(Y))$, we define

$$r_s(Y) := \lim_{t \to s-0} r_t(Y).$$

Example

Suppose that $Y = -\Sigma(2,3,5)$.

$$\blacksquare$$
 If $0 < r < \frac{1}{120}$, then $0 = [\theta^{[s,r]}] \in I^1_{[s,r]}.$

$$\blacksquare$$
 If $\frac{1}{120} < r$, then $0 \neq [\theta^{[s,r]}] \in I^1_{[s,r]}.$

Therefore, $r_s(-\Sigma(2,3,5)) = \frac{1}{120}$.

Negative definite inequality of $\{r_s\}$

For a negative definite cobordism W with $\partial W=Y_0\amalg(-Y_1)$ and $H_1(W,\mathbb{R})=0,\ s\in\mathbb{R}_{\leq 0}\cup\{-\infty\}$ and $r\in\mathbb{R}_{\geq 0}\setminus(cs(R(Y_0))\cup cs(R(Y_1)))$, we have the cobordism map

$$CW: I_{[s,r]}^*(Y_1; \mathbb{Q}) \to I_{[s,r]}^*(Y_0; \mathbb{Q})$$

with $CW(\theta_{Y_1}^{[s,r]})=c(W)\theta_{Y_0}^{[s,r]}$, where c(W) is a non-zero rational number. This map is defined by counting the solutions to the ASD-moduli space for W. This gives the inequality

$$r_s(Y_0) \le r_s(Y_1).$$

Moreover, If $r_s(Y_1)<\infty$ and $r_s(Y_0)=r_s(Y_1)$, one can construct an irreducible SU(2)-representation of $\pi_1(W)$. Therefore, if $\pi_1(W)=1$ and $r_s(Y_1)<\infty$, we have

$$r_s(Y_0) < r_s(Y_1).$$

Cobordism inequality of $\{r_s\}$

To prove $r_0(Y_0\#Y_1)\geq \min\{r_0(Y_0),r_0(Y_1)\}$, we need to show if $[\theta_{Y_0}^{[0,r]}]=0$ for i=0 and 1 then $[\theta_{Y_0\#Y_1}^{[0,r]}]=0$. Let W be a cobordism with $\partial W=Y_0\#Y_1\amalg(-Y_0)\amalg(-Y_1)$ obtained by adding a 3-handle on $Y_0\#Y_1$. There are four kinds of maps on the instanton chain complex induced by W:

$$p_0CW: CI_*^{[0,r]}(Y_0 \# Y_1) \to CI_*^{[0,r]}(Y_0) \otimes CI_*^{[0,r]}(Y_1),$$

$$p_1CW: CI_*^{[0,r]}(Y_0 \# Y_1) \to CI_*^{[0,r]}(Y_1),$$

$$lacksquare p_2 CW: CI_*^{[0,r]}(Y_0 \# Y_1) o CI_*^{[0,r]}(Y_0)$$
 and

$$p_3CW: CI_*^{[0,r]}(Y_0\#Y_1) \to \mathbb{Q}.$$

Moreover, these maps satisfy nice equations related to $[\theta_{Y_0}^{[0,r]}]$, $[\theta_{Y_1}^{[0,r]}]$ and $[\theta_{Y_0\#Y_1}^{[0,r]}]$. Using such equations and the assumption $[\theta_{Y_i}^{[0,r]}]=0$, one can see $[\theta_{Y_0\#Y_1}^{[0,r]}]=0$.

Further directions

- Recently, Daemi-Scaduto '19 constructed $\Gamma_K(k)$ for knots using quantitative instanton knot Floer homology. $\exists r_s$ -type invariants? \exists connected sum formula?
- \blacksquare a local equivalence theory of quantitative instanton theory? Daemi, Sato and I are discussing now. (As an application, we gave connected sum inequalities for $\Gamma_Y(k)$.) Daemi-Scaduto '19 gave a formulation of local equivalence in quantitative instanton knot Floer homology.
- Can we prove $\Theta^3_{\mathbb{Z}}(\geq \infty)$ contain \mathbb{Z}^∞ as a subgroup? $\{\Sigma(p,q,pqk+1)\}$ are linearly independent?
- In my recent paper [arXiv:1910.02234], I gave a relation between Seifert hypersurfaces of smooth 2-knots and irreducible SU(2)-representations of their knot groups as applications of $\Gamma_Y(k)$ and $r_s(Y)$. (The difference between smooth and topological 2-knots.)

Backgrounds Invariants $\{r_S\}$ and its applications Construction of invariants $\{r_S\}$

Thank you! Any comments are welcome!