Filtered instanton Floer homology and the 3-dimensional homology cobordism group (Joint work with Yuta Nozaki and Kouki Sato)

Masaki Taniguchi

RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program

Regensburg low-dimensional geometry and topology seminar, Nov. 102020 This slide is available at
"https://sites.google.com/view/masaki-taniguchis-homepage".

Contents

1 Backgrounds

2 Invariants $\left\{r_{s}\right\}$ and its applications

3 Construction of invariants $\left\{r_{s}\right\}$

Two cobordism groups

Let Y_{0} and Y_{1} be oriented homology 3 -spheres. ${ }^{1}$

Definition (The homology cobordism group)

We say Y_{0} is homology cobordant to $Y_{1}\left(Y_{0} \sim_{\mathbb{Z} H} Y_{1}\right)$ if there exists a compact oriented smooth 4-manifold W with $\partial W=Y_{0} \amalg\left(-Y_{1}\right)$ such that the maps $H_{*}\left(Y_{i}, \mathbb{Z}\right) \rightarrow H_{*}(W, \mathbb{Z})$ induced by inclusions $Y_{i} \rightarrow W$ are isomorphisms.

$$
\Theta_{\mathbb{Z}}^{3}:=\{\text { oriented homology 3-spheres }\} / \sim_{\mathbb{Z} H}
$$

Let K_{0} and K_{1} be oriented knots in S^{3}.

Definition (The knot concordance group \mathcal{C})

We say K_{0} is concordant to $K_{1}\left(K_{0} \sim_{c} K_{1}\right)$ if there exists a smooth embedding $J: S^{1} \times[0,1] \rightarrow S^{3} \times[0,1]$ such that $\left.J\right|_{S^{1} \times\{i\}}=K_{i} \times\{i\}$ for $i=0$ and 1 .

$$
\mathcal{C}:=\{\text { all oriented knots }\} / \sim_{c}
$$

[^0]
Known results related to $\Theta_{\mathbb{Z}}^{3}$ and \mathcal{C}

- The rational homology cobordism group $\Theta_{\mathbb{Q}}^{3}$ is defined by replacing \mathbb{Z} with \mathbb{Q} in the definition of $\Theta_{\mathbb{Z}}^{3}$. The double branched cover gives a homomorphism

$$
\Sigma: \mathcal{C} \rightarrow \Theta_{\mathbb{Q}}^{3}
$$

- 1969, Kervaire, the n-dimensional PL homology cobordism group $\Theta_{\mathbb{Z}}^{n}(P L)$ is trivial for $n \neq 3$. Moreover, $\Theta_{\mathbb{Z}}^{3}(P L) \cong \Theta_{\mathbb{Z}}^{3}$. \exists similar classification result for higher dimensional knot concordance group (1969, Levine)
■ 1976, Galewski-Stern, Matumoto, any topological manifold M with $\operatorname{dim} \geq 5$ admits a triangulation $\Longleftrightarrow 0=\exists \delta(\Delta(M)) \in H^{5}(M$, Ker $\mu)$, where $\mu: \Theta_{\mathbb{Z}}^{3} \rightarrow \mathbb{Z}_{2}$ is the Roklin homomorphism.
- 1982, Donaldson, Theorem A implies that $\Sigma(2,3,5)$ is not a torsion in $\Theta_{\mathbb{Z}}^{3}$. (YM gauge theory)
- 1990, Fintushel-Stern, Furuta, $\{\Sigma(p, q, p q n-1)\}_{n=1}^{\infty}$ are linearly independent in $\Theta_{\mathbb{Z}}^{3}$. (YM gauge theory)
- 2002, Frøyshov, a surjective homomorphism

$$
h: \Theta_{\mathbb{Z}}^{3} \rightarrow \mathbb{Z}
$$

such that $h(\Sigma(2,3,5))=1 \Longrightarrow$ existence of a \mathbb{Z}-summand. (Floer homology in YM gauge theory)

- 2016, Manolescu, Roklin homomorphism $\mu: \Theta_{\mathbb{Z}}^{3} \rightarrow \mathbb{Z}_{2}$ does not split \Longrightarrow disproof of triangulation conjecture for $n \geq 5$. ($\operatorname{Pin}(2)-S e i b e g-W i t t e n$ Floer homology)
- 2018, Dai-Hom-Stoffregen-Truong, a surjective homomorphism

$$
\Theta_{\mathbb{Z}}^{3} \rightarrow \mathbb{Z}^{\infty}
$$

\Longrightarrow existence of a \mathbb{Z}^{∞}-summand. (Involutive Heegaard Floer homology)
■ 2018, Daemi, a family of real-valued functions parametrized by $k \in \mathbb{Z}$

$$
\Gamma_{Y}(k): \Theta_{\mathbb{Z}}^{3} \rightarrow[0, \infty]
$$

(Floer homology in YM gauge theory)

- 2020, Nov, Hendricks-Hom-Stoffregen-Zemke, the manifold $S_{1}^{3}(-2 T(6,7) \# T(6,13) \# T(-2,3 ; 2,5))$ is not contained in the subgroup $\Theta_{S F}^{3}$ generated by Seifert homology 3-spheres. (Involutive Heegaard Floer homology) ($T(-2,3 ; 2,5):(2,5)$-cable of $T(-2,3), 2$ is the longitudinal winding.)

Open questions on $\Theta_{\mathbb{Z}}^{3}$ and \mathcal{C}

The first point is that $-S_{1 / n}\left(T_{p, q}\right)=\Sigma(p, q, p q n-1)$.

Open question on Θ_{Z}^{3}

Is there a nice sufficient condition of K such that $\left\{S_{1 / n}(K)\right\}$ are linearly independent in $\Theta_{\mathbb{Z}}^{3}$?

The second point is a geometric structure of homology 3 -spheres. We confirmed that Hendricks-Hom-Stoffregen-Zemke's example $S_{1}^{3}(-2 T(6,7) \# T(6,13) \# T(-2,3 ; 2,5))$ is a graph homology 3 -sphere.

Open question on $\Theta_{\mathbb{Z}}^{3}$
Is $\Theta_{\mathbb{Z}}^{3}$ generated by all graph homology 3-spheres?
The Whitehead double ${ }^{2}$ determines a map $D: \mathcal{C} \rightarrow \mathcal{C}$.

Hedden-Kirk's conjecture

The map D preserves the linear independence.

Idea to answer open questions
We will give a filtration of subgroups of $\Theta_{\mathbb{Z}}^{3}$ by giving a real-valued homology cobordism invariant.

Main result

Theorem (2019, Nozaki-Sato-T, (Floer homology in YM gauge theory))

For $s \in \mathbb{R}_{\leq 0} \amalg\{-\infty\}$ and an oriented homology sphere Y, we define $r_{s}(Y) \in \mathbb{R}_{>0} \amalg\{\infty\}$ satisfying the following conditions:

1 (Monotonicity) If $s \leq s^{\prime}$, then $r_{s^{\prime}}(Y) \leq r_{s}(Y)$.
2 (Values) The values of $r_{s}(Y)$ are contained in the set of critical values of the $S U(2)$-Chern-Simons functional of Y.
3 (Negative Definite Inequality) Let Y_{0} and Y_{1} be $\mathbb{Z H} S^{3}$'s and W a negative definite cobordism with $\partial W=Y_{0} \amalg-Y_{1}$. Then $r_{s}\left(Y_{1}\right) \leq r_{s}\left(Y_{0}\right)$ holds for any s. If $\pi_{1}(W)=1$ and $r_{s}\left(Y_{0}\right)<\infty$, then $r_{s}\left(Y_{1}\right)<r_{s}\left(Y_{0}\right)$ holds.
4 (Connectes Sum Inequality) The invariant r_{s} satisfies

$$
r_{s}\left(Y_{1} \# Y_{2}\right) \geq \min \left\{r_{s_{1}}\left(Y_{1}\right)+s_{2}, r_{s_{2}}\left(Y_{2}\right)+s_{1}\right\}
$$

for $s=s_{1}+s_{2} \in(-\infty, 0]$.
5 (Non-Triviality) $r_{-\infty}(Y)<\infty \Longleftrightarrow h(Y)<0$, where $h: \Theta_{\mathbb{Z}}^{3} \rightarrow \mathbb{Z}$ is the Frøyshov homomorphism.

Remarks on the main theorem

- Daemi's invariants $\Gamma_{Y}(k)$ also satisfy the conditions 2,3 and 5 for a positive k. ヨa relation between $r_{s}(Y)$ and $\Gamma_{Y}(k)$? We proved that, for any oriented homology 3-sphere $Y, r_{-\infty}(-Y)=\Gamma_{Y}(1)$ (NST19).
- \exists an example of Y such that $r_{s}(Y)$ is not constant w.r.t. s.
- Roughly speaking, $r_{0}(Y)$ is given by

$$
\begin{aligned}
& \inf \left\{\left.-\frac{1}{8 \pi^{2}} \int_{Y \times \mathbb{R}} \operatorname{Tr}(F(A) \wedge F(A)) \right\rvert\, A \in \Omega_{Y \times \mathbb{R}}^{1} \otimes \mathfrak{s u}(2) \text { with }(*)\right\} \\
& =\inf \left\{c s(b) \mid A \in \Omega_{Y \times \mathbb{R}}^{1} \otimes \mathfrak{s u}(2) \text { with }(*), b=\left.\exists \lim _{t \rightarrow-\infty} A\right|_{Y \times\{t\}}\right\}
\end{aligned}
$$

The conditions $(*)$ are given as follows:

- $0=\left.\exists \lim _{t \rightarrow \infty} A\right|_{Y \times\{t\}}$.
- \exists Riemann metric g on Y such that the ASD-equation $\frac{1}{2}\left(1+*_{g+d t^{2}}\right) F(A)=0$ is satisfied.
- The Fredholm index of the operator $d_{A}^{+}+d_{A}^{*}$ on $Y \times \mathbb{R}$ is 1 .

Calculations

Example

$r_{s}\left(S^{3}\right)=\infty$ for any s.

Theorem (D18,NST19)

$\Gamma_{\Sigma(p, q, p q n-1)}(1)=r_{s}(-\Sigma(p, q, p q n-1))=\frac{1}{4 p q(p q n-1)}$ for any s.
In general,

$$
\bigcup_{s} r_{s}\left(\Theta_{G R}^{3}\right) \subset \mathbb{Q}>0 \amalg\{\infty\},
$$

where $\Theta_{G R}^{3}$ is the subgroup of $\Theta_{\mathbb{Z}}^{3}$ generated by graph homology 3-spheres. We tried to calculate r_{s} for the hyperbolic manifold $S_{1 / 2}^{3}\left(5_{2}^{*}\right)$ obtained by the $1 / 2$-surgery along the mirror image of 5_{2}.

Calculations

Theorem (NST, 19)

By computer, for any s,

$$
r_{s}\left(S_{1 / 2}^{3}\left(5_{2}^{*}\right)\right) \approx 0.001764890478648851130739625897
$$

whose error is 10^{-50}, where $S_{1 / 2}^{3}\left(5_{2}^{*}\right)$ is the $1 / 2$ surgery on the mirror image of 52 in Rolfsen's table.

Our computation is based on Kirk and Klassen's formula (to be explained in the next slide).

Our conjecture
$r_{s}\left(S_{1 / 2}^{3}\left(5_{2}^{*}\right)\right)$ is irrational.
If the conjecture is true, we can conclude that $\Theta_{\mathbb{Z}}^{3} / \Theta_{G R}^{3}$ is non-trivial.

Computation of $r_{s}\left(S_{1 / 2}^{3}\left(5_{2}^{*}\right)\right)$

Let ρ_{0}, ρ_{1} be $S U(2)$-representations of $\pi_{1}=\pi_{1}\left(S_{-1 / 2}^{3}\left(5_{2}\right)\right)$ and $\left\{\rho_{s}\right\}_{s} \subset \operatorname{Hom}\left(\pi_{1}\left(S^{3} \backslash 5_{2}\right), S L(2, \mathbb{C})\right)$ a path from ρ_{0} to ρ_{1}. Then Kirk and Klassen gave a fomula of the form

$$
c s\left(\rho_{1}\right)-c s\left(\rho_{0}\right) \equiv \int_{0}^{1}{ }^{\prime} \rho_{s}(\lambda) \& \rho_{s}(\mu) " d s \quad \bmod \mathbb{Z}
$$

The irreducible representations of $\pi_{1}\left(S^{3} \backslash 5_{2}\right)$ are described by the Riley polynomial

$$
\phi(t, u)=-\left(t^{-2}+t^{2}\right) u+\left(t^{-1}+t\right)\left(2+3 u+2 u^{2}\right)-\left(3+6 u+3 u^{2}+u^{3}\right)
$$

	t	u	$-c s$
ρ_{1}	$0.716932+0.697143 i$	-0.0755806	0.00176489
ρ_{2}	$0.309017+0.951057 i$	-1.00000	0.166667
ρ_{3}	$-0.339570+0.940581 i$	-2.41421	0.604167
ρ_{4}	$-0.778407+0.627759 i$	-1.69110	0.388460
ρ_{5}	$-0.809017+0.587785 i$	-1.00000	0.166667
ρ_{6}	$-0.905371+0.424621 i$	-2.16991	0.865934
ρ_{7}	$-0.912712+0.408603 i$	-3.62043	0.321158
ρ_{8}	$-0.988857+0.148870 i$	-2.41421	0.604167

We define

$$
\Theta_{\mathbb{Z}}^{3}(\geq r):=\left\{[Y] \in \Theta_{\mathbb{Z}}^{3} \mid \min \left\{r_{0}(Y), r_{0}(-Y)\right\} \geq r\right\}
$$

for $r \in[0, \infty]$. We see that $\Theta_{\mathbb{Z}}^{3}(\geq r)$ is a subgroup because of the connected sum inequality

$$
r_{0}\left(Y_{1} \# Y_{2}\right) \geq \min \left\{r_{0}(Y), r_{0}(-Y)\right\}
$$

Three applications of $\left\{r_{s}\right\}$

Theorem ((I), NST, 19)

For any knot K in S^{3} with $h\left(S_{1}(K)\right)<0,\left\{S_{1 / n}^{3}(K)\right\}$ are linearly independent in $\Theta_{\mathbb{Z}}^{3}$.

If we take $K=T_{p, q}$, this theorem recovers the result of Furuta, Fintushel-Stern in ' 90.

Proposition

All positive k-twisted knots $(k \geq 1)$ and ($2, q$)-cable knots ($q \geq 3$) satisfy $h\left(S_{1}(K)\right)<0$.

Useful lemmas

In the proof of Theorem (I), we use the following property of r_{0}.

Lemma

Let $\left\{Y_{n}\right\}_{n=1}^{\infty}$ be a sequence of oriented homology 3-spheres satisfying the following two conditions:

- $r_{0}\left(Y_{1}\right)>r_{0}\left(Y_{2}\right)>\cdots$ and
- $r_{0}\left(-Y_{n}\right)=\infty$ for any n.

Then the sequence $\left\{\left[Y_{n}\right]\right\}$ are linearly independent in both $\Theta_{\mathbb{Z}}^{3}$ and $\Theta_{\mathbb{Q}}^{3}$.

Sketch of the proof of the Theorem (I)

Set $Y_{n}:=S_{1 / n}(K)$. The Non-Triviality and Negative Deinite Inequality of r_{0} implies $r_{0}\left(Y_{1}\right)<\infty$ and $r_{0}\left(-Y_{n}\right)=\infty$. On the other hand, we have a positive definite cobordism W_{n} with $\partial\left(W_{n}\right)=-Y_{n} \amalg\left(Y_{n+1}\right)$ described by

One can see that W_{n} is simply connected for each n. Therefore the strict version of Negative Deinite Inequality of r_{0} implies that

$$
r_{0}\left(Y_{1}\right)>r_{0}\left(Y_{2}\right)>\cdots .
$$

Three applications of $\left\{r_{s}\right\}$

Theorem ((II), NST, 19)

\exists infinitely many homology spheres $\left\{Y_{k}\right\}$ such that Y_{k} does not admit any definite bounding.

Set $Y_{k}:=2 \Sigma(2,3,5) \#(-\Sigma(2,3,6 k+5)) .(k \geq 1)$ Then using Connected Sum Inequality, we have $r_{0}\left(Y_{k}\right)=\frac{1}{24(6 k+5)}<\infty$. Moreover, the calculation $h\left(-Y_{k}\right)=-1$ and Non-Triviality implies that $r_{0}\left(-Y_{k}\right)<\infty$.

Corollary (NST, 19)

The class $\left[Y_{k}\right] \in \Theta_{\mathbb{Z}}^{3}$ does not contain any Seifert homology sphere and homology 3-sphere obtained by a surgery on a knot in S^{3}.

It is known that all Seifert homology spheres and homology 3-spheres obtained by surgeries on knots admit a definite bounding.
Stoffregen('15) proved that $[\Sigma(2,3,11) \# \Sigma(2,3,11)]$ does not contain any Seifert homology 3-sphere. ($\operatorname{Pin}(2)$-Seiberg-Witten Floer homology)

Three applications of $\left\{r_{s}\right\}$

Let $T_{p, q}$ be the (p, q)-torus knot. In 2012, Hedden-Kirk proved that $\left\{D\left(T_{2,2^{n}-1}\right)\right\}_{n=2}^{\infty}$ are lineary independent in \mathcal{C}.

Theorem ((III), NST, 19)

Let (p, q) be a coprime pair. $\left\{D\left(T_{p, n p+q}\right)\right\}_{n=1}^{\infty}$ are lineary independent in \mathcal{C}.
Since

$$
\Sigma: \mathcal{C} \rightarrow \Theta_{\mathbb{Q}}^{3}
$$

is a homomorphism, it is sufficient to prove that $\left\{\Sigma\left(D\left(T_{p, k p+q}\right)\right)\right\}_{k=1}^{\infty}$ are linearly independent in $\Theta_{\mathbb{Q}}^{3}$. Note that $\Sigma\left(D\left(T_{p, q}\right)\right)=S_{1 / 2}^{3}\left(T_{p, q} \# T_{p, q}\right)$ is $\mathbb{Z} H S^{3}$.

Lemma

- $r_{0}\left(\Sigma\left(D\left(T_{p, q}\right)\right)<\infty\right.$.
- $r_{0}\left(\Sigma\left(D\left(T_{p, q}\right)\right)>r_{0}\left(\Sigma\left(D\left(T_{p, p+q}\right)\right)\right.\right.$.

To prove the above lemma, we construct
■ neg. defn. cob. with boundary $(-\Sigma(p, q, 2 p q-1)) \amalg\left(-\Sigma\left(D\left(T_{p, q}\right)\right)\right.$
■ simp. conn. neg. defn. cob. with boundary $\Sigma\left(D\left(T_{p, q}\right)\right) \amalg\left(-\Sigma\left(D\left(T_{p, p+q}\right)\right)\right.$

Sketch of the proof of Theorem (III)

Lemma

If $K_{0} \rightarrow \cdots \rightarrow K_{1}$ by a seq. of pos. crossing changes, then \exists neg. defn. cob. with boundary $S_{1 / n}^{3}\left(K_{1}\right) \amalg\left(-S_{1 / n}^{3}\left(K_{0}\right)\right)$ for $\forall n$.

- $T_{p, q} \# T_{p, q} \xrightarrow{\text { pos. c.c. }} T_{p, q} \rightsquigarrow r_{0}\left(\Sigma\left(D_{p, q}\right)\right)<\infty$

■ $T_{p, q+p} \# T_{p, q+p} \xrightarrow{\text { pos. c.c. }} T_{p, q} \# T_{p, q} \rightsquigarrow r_{0}\left(\Sigma\left(D_{p, q}\right)\right)>r_{0}\left(\Sigma\left(D_{p, p+q}\right)\right)$

History of instanton homology related to our work

Let Y be an oriented homology 3-sphere.
■ 1987, Floer, Instanton homology $I_{*}(Y)$ with $* \in \mathbb{Z} / 8 \mathbb{Z}$.

- 1992, Fintushel-Stern, Filtered version of instanton homology $I_{*}^{[r, r+1]}(Y)$ with $* \in \mathbb{Z}$ for $r \in \mathbb{R}$.
- 2002, Donaldson, The obstruction class $\left[\theta_{Y}\right] \in I^{1}(Y)$. If Y admits a negative definite bounding with non-standard intersection form, then $0 \neq\left[\theta_{Y}\right] \in I^{1}(Y ; \mathbb{Q})$.
- 2019, NST, Filtered instanton cohomology $I_{[s, r]}^{*}(Y)$ and the filtered version $\left[\theta_{Y}^{[s, r]}\right] \in I_{[s, r]}^{*}(Y)$ of the obstruction class.

Definition

$r_{s}(Y):=\sup \left\{r \in \mathbb{R} \mid 0=\left[\theta_{Y}^{[s, r]}\right] \in I_{[s, r]}^{*}(Y)\right\}$
Such a quantitative construction in Floer theory appears in several situations including Hamiltonian Floer homology and embedded contact homology.

Let Y be an oriented homology 3-sphere. Set $\mathcal{B}_{Y}:=\Omega_{Y}^{1} \otimes \mathfrak{s u}(2) / \operatorname{Map}^{0}(Y, S U(2))$, where $\operatorname{Map}^{0}(Y, S U(2))$ is the set of null-homotopic smooth maps and the action is given by $a * g:=g^{-1} d g+g^{-1} a g$. The (perturbed) Chern-Simons functional

$$
c s_{h}: \mathcal{B}_{Y} \rightarrow \mathbb{R}
$$

is given by

$$
c s([a]):=\frac{1}{8 \pi^{2}} \int_{Y} \operatorname{Tr}\left(a \wedge d a+\frac{2}{3} a \wedge a \wedge a\right)+h
$$

for some perturbation $h: \mathcal{B}_{Y} \rightarrow \mathbb{R}$. The "critical point set" of $c s_{h}$ is given by

$$
R_{h}(Y)=\left\{[a] \in \mathcal{B}_{Y} \mid F(a)+* \operatorname{grad}_{a} h=0\right\}
$$

Floer defined the Floer index

$$
\operatorname{ind}_{h}: R_{h}(Y) \rightarrow \mathbb{Z}
$$

under some good situation.

Gradient flow of cs

Fix a Riemann metric on Y. We equip an L^{2}-inner product on $\Omega_{Y}^{1} \otimes \mathfrak{s u}(2)$ by

$$
(a, b):=-\frac{1}{4 \pi^{2}} \int_{Y} \operatorname{Tr}(a \wedge * b) .
$$

Then the formal gradient flow of $c s$ w.r.t. the inner product is given by

$$
\operatorname{grad}(c s+h): a \mapsto-*_{g}(F(a))+\operatorname{grad} h .
$$

A downward gradient flow $c: \mathbb{R} \rightarrow \Omega_{Y}^{1} \otimes \mathfrak{s u}(2)$ of grad $(c s+h)$ corresponds to a solution to the ASD-equation

$$
\frac{1}{2}\left(1+*_{g+d t^{2}}\right)\left(F(A)+\pi_{h}(A)\right)=0
$$

where A is the $S U(2)$-connection on $Y \times \mathbb{R}$ given by $\left.A\right|_{Y \times t}=c(t)$ such that $(d t$-component of $A)=0$.

In the case of $Y=-\Sigma(2,3,5)$

The critical point set is

$$
R(Y)=\left\{\rho_{1}^{i}, \rho_{2}^{i}, \theta^{i}\right\}_{i \in \mathbb{Z}} .
$$

The critical values are

$$
\operatorname{cs}\left(\rho_{1}^{i}\right)=\frac{1}{120}+i, c s\left(\rho_{2}^{i}\right)=\frac{49}{120}+i \text { and } c s\left(\theta^{i}\right)=i .
$$

The Floer indicies are given by

$$
\operatorname{ind}\left(\rho_{1}^{i}\right)=1+8 i, \operatorname{ind}\left(\rho_{2}^{i}\right)=5+8 i \text { and } \operatorname{ind}\left(\theta^{i}\right)=-3+8 i
$$

Construction of I_{*}

Suppose that $c s+h$ is Morse. $\left(\Longleftrightarrow\right.$ Hess $(c s+h)_{a}: \operatorname{Ker} d_{a}^{*} \rightarrow \operatorname{Ker} d_{a}^{*}$ is injective for any critical point a.) The instanton Floer chain is given by

$$
C I_{*}(Y):=\mathbb{Z}\left\{[a] \in R_{h}(Y) \backslash\left\{\theta^{i}\right\} \mid \operatorname{ind}_{h}([a])=*\right\} .
$$

The differential is defined by

$$
\partial([a])=\sum_{[b] \in R(Y), \operatorname{ind}([a])-\operatorname{ind}([b])=1} \#\left(M_{h}([a],[b]) / \mathbb{R}\right)[b],
$$

where the space $M_{h}([a],[b])$ is the set of trajectories of $c s+h$ from $[a]$ to $[b]$.

Construction of I_{*}

When we give a topology on $M_{h}([a],[b])$, we use the identification

$$
M_{h}([a],[b]) \cong\left\{A \in \Omega^{1}(Y \times \mathbb{R}) \otimes \mathfrak{s u}(2)_{L_{k, l o c}^{2}} \mid(*)\right\} / \mathcal{G}
$$

where the conditions $(*)$ are given by

- $A-p^{*} a \in L_{k}^{2}(Y \times(-\infty,-1]), A-p^{*} b \in L_{k}^{2}(Y \times[1, \infty))$ and

■ $\left(1+*_{g+d t^{2}}\right)\left(F(A)+\pi_{h}(A)\right)=0$ (ASD equation),
where the map p is the projection $Y \times \mathbb{R} \rightarrow Y$. The gauge group \mathcal{G} is

$$
\left\{\begin{array}{l|l}
g \in \operatorname{Map}(Y \times \mathbb{R}, S U(2))_{L_{k, l o c}^{2}} & \begin{array}{l}
g^{*} p^{*} a \in L_{k}^{2}(Y \times(-\infty,-1]) \\
g^{*} p^{*} b \in L_{k}^{2}(Y \times[1, \infty))
\end{array}
\end{array}\right\}
$$

(One can check that the group \mathcal{G} acts on the space $\left.\left\{A \in \Omega^{1}(Y \times \mathbb{R}) \otimes \mathfrak{s u}(2)_{L_{k, l o c}^{2}} \mid(*)\right\}.\right)$

Construction of I_{*}

Theorem (Floer)

There exists a nice class of perturbations $h: \mathcal{B} \rightarrow \mathbb{R}$ of $c s$ satisfying the following conditions:

■ The map ∂ is well-defined, i.e. , $M_{h}([a],[b])$ has a structure of a manifold of dimension ind $([a])-\operatorname{ind}([b])$ such that \mathbb{R} action on $M_{h}([a],[b])$ is proper and free if ind $([a])-\operatorname{ind}([b])>0$ and $M_{h}([a],[b]) / \mathbb{R}$ is compact if $\operatorname{ind}([a])-\operatorname{ind}([b])=1$. Moreover, there is a method to give orientations on $M_{h}([a],[b])$.

- $\partial^{2}=0$ holds.
- The chain homotopy type of $\left(C I_{*}, \partial\right)$ does not depend on h and g_{Y}.

The instanton (co) homology is given by $I_{*}(Y):=H_{*}\left(C I_{*}, \partial\right)$.

Example

$$
I_{*}(-\Sigma(2,3,5)) \cong\left\{\begin{array}{l}
\mathbb{Z} \text { if } *=1,5 \bmod 8 \\
0 \text { otherwise }
\end{array}\right.
$$

The obstruction class $[\theta]$

Definition

The homomorphism $\theta: C I_{1} \rightarrow \mathbb{Z}$ is given by $[a] \mapsto \# M_{h}\left([a],\left[\theta^{0}\right]\right)$.
One can see that $\partial^{*} \theta=0$. Therefore, the map θ determines a class $[\theta] \in I^{1}(Y)$. Although, the definition of the map θ depends on the choice of h and g_{Y}, the cohomology class does not depend on the choices of h and g_{Y}.

Example

If $Y=-\Sigma(2,3,5), \theta: C I_{1} \rightarrow \mathbb{Z}$ satisfies $\theta\left(\rho_{1}^{0}\right)= \pm 1$. In this case, $[\theta]$ generates $I^{1}(Y)$.

Construction of $I_{[s, r]}^{*}$

Definition

For $s \in \mathbb{R}_{\leq 0} \backslash c s(R(Y)) \amalg\{-\infty\}$ and $r \in \mathbb{R}_{\geq 0} \backslash c s(R(Y))$, we define

$$
C I_{*}^{[s, r]}(Y):=\mathbb{Z}\left\{[a] \in R_{h}(Y) \backslash\left\{\theta^{i}\right\} \left\lvert\, \begin{array}{l}
\operatorname{ind}([a])=* \\
s<(c s+h)([a])<r
\end{array}\right.\right\}
$$

The differential $\partial^{[s, r]}$ is given by the restriction of ∂. The filtered instanton cohomology is given by

$$
I_{[s, r]}^{*}(Y):=H_{*}\left(\operatorname{Hom}\left(C I_{*}^{[s, r]}(Y), \mathbb{Z}\right),\left(\partial^{[s, r]}\right)^{*}\right)
$$

Theorem (Fintushel-Stern, '92)

If we take a small perturbation h to define $I_{[s, r]}^{*}(Y)$, the chain homotopy type of $\left(\operatorname{Hom}\left(C I_{*}^{[s, r]}(Y), \mathbb{Z}\right),\left(\partial^{[s, r]}\right)^{*}\right)$ does not depend on the choice of h and g_{Y}.

The obstruction class $\left[\theta^{[s, r]}\right]$

Definition

For $s \in \mathbb{R}_{\leq 0} \backslash c s(R(Y)) \amalg\{-\infty\}$ and $r \in \mathbb{R}_{\geq 0} \backslash c s(R(Y))$, we have the homomorphism $\theta^{[s, r]}: C I_{1}^{[s, r]} \rightarrow \mathbb{Z}$ given by $[a] \mapsto \# M_{h}\left([a],\left[\theta^{0}\right]\right)$.

One can see that $\left(\partial^{[s, r]}\right)^{*} \theta=0$. Therefore, the map $\theta^{[s, r]}$ determines a class $\left[\theta^{[s, r]}\right] \in I_{[s, r]}^{1}(Y)$. Moreover, for a small perturbation h, the class $\left[\theta^{[s, r]}\right] \in I_{[s, r]}^{1}(Y)$ is well-defined.

Example

Suppose that $Y=-\Sigma(2,3,5)$.

- If $0<r<\frac{1}{120}$, then the map $\theta^{[s, r]}: C I_{1}^{[s, r]} \rightarrow \mathbb{Z}$ is the zero map since $C I_{1}^{[s, r]}=0$.
- If $\frac{1}{120}<r$, then the map $\theta^{[s, r]}: C I_{1}^{[s, r]} \rightarrow \mathbb{Z}$ gives an isomorphism.

Definition of r_{s}

Definition

For a given oriented homology 3-sphere Y and $s \in[-\infty, 0] \backslash \operatorname{cs}(R(Y))$,

$$
r_{s}(Y):=\sup \left\{r \mid 0=\left[\theta^{[s, r]} \otimes \mathbf{I d}_{\mathbb{Q}}\right] \in I_{[s, r]}^{1}(Y ; \mathbb{Q})\right\}
$$

When $s \in c s(R(Y))$, we define

$$
r_{s}(Y):=\lim _{t \rightarrow s-0} r_{t}(Y)
$$

Example

Suppose that $Y=-\Sigma(2,3,5)$.

- If $0<r<\frac{1}{120}$, then $0=\left[\theta^{[s, r]}\right] \in I_{[s, r]}^{1}$.
- If $\frac{1}{120}<r$, then $0 \neq\left[\theta^{[s, r]}\right] \in I_{[s, r]}^{1}$.

Therefore, $r_{s}(-\Sigma(2,3,5))=\frac{1}{120}$.

Negative definite inequality of $\left\{r_{s}\right\}$

For a negative definite cobordism W with $\partial W=Y_{0} \amalg\left(-Y_{1}\right)$ and $H_{1}(W, \mathbb{R})=0, s \in \mathbb{R}_{\leq 0} \cup\{-\infty\}$ and $r \in \mathbb{R}_{\geq 0} \backslash\left(c s\left(R\left(Y_{0}\right)\right) \cup c s\left(R\left(Y_{1}\right)\right)\right)$, we have the cobordism map

$$
C W: I_{[s, r]}^{*}\left(Y_{1} ; \mathbb{Q}\right) \rightarrow I_{[s, r]}^{*}\left(Y_{0} ; \mathbb{Q}\right)
$$

with $C W\left(\theta_{Y_{1}}^{[s, r]}\right)=c(W) \theta_{Y_{0}}^{[s, r]}$, where $c(W)$ is a non-zero rational number. This map is defined by counting the solutions to the ASD-moduli space for W. This gives the inequality

$$
r_{s}\left(Y_{0}\right) \leq r_{s}\left(Y_{1}\right)
$$

Moreover, If $r_{s}\left(Y_{1}\right)<\infty$ and $r_{s}\left(Y_{0}\right)=r_{s}\left(Y_{1}\right)$, one can construct an irreducible $S U(2)$-representation of $\pi_{1}(W)$. Therefore, if $\pi_{1}(W)=1$ and $r_{s}\left(Y_{1}\right)<\infty$, we have

$$
r_{s}\left(Y_{0}\right)<r_{s}\left(Y_{1}\right)
$$

Cobordism inequality of $\left\{r_{s}\right\}$

To prove $r_{0}\left(Y_{0} \# Y_{1}\right) \geq \min \left\{r_{0}\left(Y_{0}\right), r_{0}\left(Y_{1}\right)\right\}$, we need to show if $\left[\theta_{Y_{i}}^{[0, r]}\right]=0$ for $i=0$ and 1 then $\left[\theta_{Y_{0} \# Y_{1}}^{[0, r]}\right]=0$. Let W be a cobordism with $\partial W=Y_{0} \# Y_{1} \amalg\left(-Y_{0}\right) \amalg\left(-Y_{1}\right)$ obtained by adding a 3-handle on $Y_{0} \# Y_{1}$.
There are four kinds of maps on the instanton chain complex induced by W;

- $p_{0} C W: C I_{*}^{[0, r]}\left(Y_{0} \# Y_{1}\right) \rightarrow C I_{*}^{[0, r]}\left(Y_{0}\right) \otimes C I_{*}^{[0, r]}\left(Y_{1}\right)$,
- $p_{1} C W: C I_{*}^{[0, r]}\left(Y_{0} \# Y_{1}\right) \rightarrow C I_{*}^{[0, r]}\left(Y_{1}\right)$,
- $p_{2} C W: C I_{*}^{[0, r]}\left(Y_{0} \# Y_{1}\right) \rightarrow C I_{*}^{[0, r]}\left(Y_{0}\right)$ and
- $p_{3} C W: C I_{*}^{[0, r]}\left(Y_{0} \# Y_{1}\right) \rightarrow \mathbb{Q}$.

Moreover, these maps satisfy nice equations related to $\left[\theta_{Y_{0}}^{[0, r]}\right],\left[\theta_{Y_{1}}^{[0, r]}\right]$ and $\left[\theta_{Y_{0} \# Y_{1}}^{[0, r]}\right]$. Using such equations and the assumption $\left[\theta_{Y_{i}}^{[0, r]}\right]=0$, one can see $\left[\theta_{Y_{0} \# Y_{1}}^{[0, r]}\right]=0$.

Further directions

- Recently, Daemi-Scaduto '19 constructed $\Gamma_{K}(k)$ for knots using quantitative instanton knot Floer homology. $\exists r_{s}$-type invariants? \exists connected sum formula?
- \exists a local equivalence theory of quantitative instanton theory? Daemi, Sato and I are discussing now. (As an application, we gave connected sum inequalities for $\Gamma_{Y}(k)$.) Daemi-Scaduto '19 gave a formulation of local equivalence in quantitative instanton knot Floer homology.
- Can we prove $\Theta_{\mathbb{Z}}^{3}(\geq \infty)$ contain \mathbb{Z}^{∞} as a subgroup? $\{\Sigma(p, q, p q k+1)\}$ are linearly independent?
■ In my recent paper [arXiv:1910.02234], I gave a relation between Seifert hypersurfaces of smooth 2-knots and irreducible $S U(2)$-representations of their knot groups as applications of $\Gamma_{Y}(k)$ and $r_{s}(Y)$. (The difference between smooth and topological 2-knots.)

Thank you! Any comments are welcome!

[^0]: ${ }^{1}$ A closed 3-manifold Y is called a homology 3-sphere if $H_{*}(Y ; \mathbb{Z}) \cong H_{*}\left(S^{3} ; \mathbb{Z}\right)$.

